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Summary

This report will be mainly concerned with the techniques of cluster
analysis, which are practically useful tools for the analysis of multi-
dimensional data. Especially, during about the recent eighteen years, a
large number of techniques of cluster analysis are proposed and studied
by many researchers. Indeed the needs for these techniques arise in
many fields of applied science.

Particularly hierarchical techniques are perhaps the most commonly
used category of clustering methods. Because of this, the methods of
hierarchical cluster analysis, especially agglomerative hierarchical
clustering (AHC) methods, are used widely, since most of these methods
are suitable for various kind of data and may be simply carried out.
Nevertheless, though the investigations for evaluation or comparison of
the properties between these methods are only little discussed systema-
tically in works, it is quite importance and necessary to discuss them
in order to enable us to formulate in terms of a satisfactory validity
of clustering process.

Generally, in the AHC methods, relationships among the objects be-
ing classified are represented by a dissimilarity or similarity matrix.
Therefore it is quite natural and meaningful to describe the matrix by
taking as a representation of a relation or a graph. On such a case,
especially, the concept of fuzzy relations proposed by Zadeh is more re-
levant and useful to examine reasonably the clustering models.

Thus we shall firstly attempt to summarize several properties among
the AHC methods, especially, single linkage, complete linkage, and the
synonymous techniques, based on the fuzzy theory. And we can clearly
crarify the following features: a) the solution (i.e. dendrogram) ob-
tained from single or complete linkage is equivalent to the fuzzy equiva-
lence relation, b) especially, the solution of single linkage is
identical to the transitive closure formed from min-max (or max-min)
composition of the original dissimilarity (or similarity) matrix, namely
an arbitrary reflexive and symmetric relation, and c) a minimal spanning
tree may be generated by using the result of single linkage.

Furthermore, we shall propose the fuzzy degree of fitness which is
a new index of evaluating and comparing relationship between two rela-
tions, the original similarity (or dissimilarity) matrix R and the matrix
R* derived from R by excuting AHC methods. And this index may be gener-
ated by using the fuzzy symmetric difference between two relations.
Moreover we shall propose a modified clustering procedure, say modified
linkage method, which approximates a given relation R in the sense of
minimizing this index.

Successively we consider the comparison between the set of parti-
tions formed by clustering process, since the evaluating problems of
partitions is very important in the practical use of cluster analysis.
Here we examine the following problems: a) comparison between two
dendrograms (i.e. two equivalence relations), b) evaluation between
partitions produced from two or many dendrograms, and c) estimation of
the number of clusters, in other words, determining the level of cut on
a dendrogram.

Finally several practical examples are given to illustrate and
explain our consideration.
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1. Introduction

Many researchers have argued that classification is fundamental
process in all fields of science. Especially, there are a large number
of automatical classification techniques which are known and distributed
under the generic name cluster analysis. In the present paper, we shall
discuss several considerations for the cluster analysis.

More concretely speaking, if we are given a data set of »n objects
or individuals and each of them is observed on each m characteristics or
variables, then we are faced with the problem how to think out a procedure
for grouping the objects into k groups. And we shall attempt to investi-
gate the procedure for exploring the intrinsical tendency of data and
to evaluate the characteristic of the groups.

Usually, the most well known terms for techniques which classify
data into several groups are stratification and discrimination. But
cluster analysis is essentially different from these concepts in the
point that they are used to describe for assigning objects to group
having a priori given labels. For example, in the social survey data,
the technique which classifies data into groups by using the demographic
factor, such as sex and occupation, is the stratification. And the
discrimination is, for example, the term to describe the process for
classifying the patients into several categories, such as the smoking
and the no-smoking. On the other hand, the term cluster analysis is
used for techniques which group objects by the use of proximity or

similarity between objects. And in most cases, we cannot determine



groups for assigning each object a priort. In this respect, cluster
analysis is different from other methods of multivariate analysis.

Already many comprehensive reviews on clustering techniques and their
applications appeared and their detailed explanations were given by
Cormack (1977) , Everitt (1974 , 1977), Bock(1974), Sneath and Sokal(1973),
Blashfield(1977) and by many researchers in many fields. But at the

same time there were a number of case techniques misunderstood and misused.

During about the past eighteen years, especially, since 1960, there
has been a growing interest in clustering methods for forming the meaning-
ful classification. Though there are actually a large number of different
methods of cluster analysis, most of them can be arranged under the two
categories, namely, hierarchical techniques and non-hierarchical techniques.
Hierarchical techniques may be also subdivided into agglomerative methods
which perform the cluster by a successive fusions of the given objects
on data set into several groups, and divisive methods which partition
successively the data set into groups., And yet, non-hierarchical
techniques are the iterative partitioning or optimization-partitioning,
and there are many other methods included in this category, for example,
mode-seeking methods, mixture problems, clumping techniques, and so on.

The term cluster analysis was firstly appeared and discussed in the
social science and the psychology during the 1940's. At that time cluster
analysis was considered as one which be comparable to factor analysis and
principal component anaysis [see Tryon (1970)]. And it did not attract
significant attention until about the early 1960's. But it must be
emphasized that the so-called numerical taxonomy developed by Sokal and

Sneath gave the main stimulus for biological taxonomy and attracted



a great deal of attention in many fields. At the same time, another
reason of the growth of interest to cluster analysis depends upon spread
and existence of large high-speed computers made a possible to use
practically many methods during the 1960's.

In this report, we shall discuss mainly the properties of the
agglomerative hierarchical clustering (AHC) methods.  Most of AHC methods
start the clustering process by forming a matrix which represents the
pairwise similarities or dissimilarities of all objects being groups.

In general, the solution of AHC method can be represented by a hierarchical
structure, that is, a hierarchical tree or a dendrogram.  But it is rarely
that the hierarchical structure or dendrogram is constructed explicitly

by fusing of the objects. Therefore, the AHC methods can be interpreted
as a result of successive approximations to form a hierarchical structure
from the original similarity or dissimilarity matrix which represents a kind

of relationship between the objects. There are a large number of AHC
methods, for example, as well-known methods, single linkage, complete
linkage, centroid method, group average method, Ward's method, and so on.

And yet, since the applied fields of technique such as cluster
analysis are more interdisciplinary, there are many similar concepts.
Really, the various methods of cluster analysis play an important role
in such fields as psychology, sociology, biology, pattern recognition,
systematic zoology, ecology, and so on. Therefore, there are many
synonyms for cluster analysis, for example, O-mode analysis in factor
analysis, typology, grouping, clumping, numerical taxonomy or classi-

fication, and unsupervised pattern recognition.



Thus, our present aim is systematically to arrange several techni-
ques of cluster analysis to avoid the confusion caused by the above
mentioned. Furthermore, we shall extend to more generalized situation.
In addition, examining the techniques proposed by many researchers in
the distinct fields, for instance, biology and psychology we can observe
that most of those are the same or almost same methods. For example,
the researchers refferring to Johnson's paper in psychology use the terms
"maximum method" and "minimum method", but these two methods are known
as "complete linkage" and "single linkage" in the biological field.

And the terms "complete linkage", "furthest neighbor", "rank order typal
analysis", "diameter analysis" are synonyms. The terms "single linkage",
"nearest neighbor", "minimum method", "elementary linkage analysis",
"connected method" and a kind of minimal sapnning tree are synonyms.

We shall turn our attention to the facts that different terms have
been used to describe the same thing and that they may be explained
with a common conception that is said the fuzzy set theory proposed by
Zadeh. Thus, it is natural that we attempt to introduce the fuzzy set
theory and the fuzzy relation into the systematical consideration of
cluster analysis.

In the section 2, firstly, we attempt to define and characterize
several terminologies and properties of AHC techniques. For example,
we discuss hierarchical structure, hierarchical partitioning set,
dendrogram, ultrametric property, and so on. Moreover, solving our
problems appears to require some adaptive tools. In such a case,
fortunately, it seemed to us that the concept of fuzzy ralation is

more useful to examine a clustering model. Thus, section 2 will serve



to examine the several characteristics of the AHC methods and the
relationship between them and fuzzy relations.

Secondly, in the section 3, we discuss the examinations for evalu-
ation and comparison of the typical agglomerative hierarchical cluster-
ing techniques, especially, the complete linkage and the single linkage,
by using the fuzzy relation. As the clustering process depends on the
structure of data, we cannot directly evaluate the ability of cluster
analysis by the comparison of various algorithm. Therefore, the exami-
nation by the fuzzy relation is more available and useful.

Successively, in the section 4, we discuss the problems of evaluat-
ing the number of clusters and of comparing between the different
hierarchical partitions based on the same data set. Generally, the
solution of a hierarchical clustering technique is represented by a
dendrogram, but it is not always clear beforehand many clusters we can
expect. Under the some assumption concerning a cluster, we propose
the several criteria for evaluating the number of clusters and propose
a procedure for investigating the clustering process.

As a complement to our discussion, in the following, we shall
examine the behavior of clustering techniques by the observing effects
of a little change in the data set disturbed by adding noise. By this
procedure, that is called the sensitivity analysis, we can objectively
handle the problems of evaluating the number of clusters and investi-
gating the validity of clustering process. Thus we can find a clue to
the number of clusters and obtain a useful tool which is suitable for

examining the structure included in data.



In the last section, to examine our consideration, we shall illus-

trate several practical examples and briefly summarize our argument.

2. Notations and preliminary definitions
2.1 Conception of hierarchical structure
For simplicity of our discussion, firstly, we shall prepare the
several notations and terminologies.
We define the set of n objects

E = {Ol, 0] 37

2:-0 ct O?’Z}
or for abbreviation,
E = {ll 2! 31"'17:,'°',7L}

and denote the raw data consisted of a nxm matrix,

X = (x’L'Z) (i=1121"'r7'17Z=112r”'1m)

where x.= (X. ,%X. ,+**,x. )" 1is the observed vector for the 7 th
—1 11 12 m

object. Then, the AHC methods begin with the computation of a simi-

larity matrix S==(sij) or a dissimilarity (i.e. distance-like measure)
matrix D==(dij) between the objects formed from X. The distance dij
represents the degree of difference between 7 th object and j th object
and the similarity Sij represents the degree of proximity between the

objects. The dissimilarity dij or the similarity Sij is said to be

a metric for E if it satisfies the following three conditions:

i) reflexivity or anti-reflexivity,
ii) symmetry, (1)
iii) transitivity, that is, triangular inequality.



If dij or Sij satisfies only the condition i) and ii), it is said to be
a non-metric. Yet most of AHC methods can be commonly suitable for the
use of various kinds of dissimilarity or similarity.

The basic clustering procedure with AHC methods is very similar and
surprisingly simple. In the AHC methods, in short, the goal of a clus-
tering process can be represented as a dendrogram. In other words,
the input is a matrix D or S, the end of a clustering process is a
dendrogram which is a graphical representation of hierarchical structure.
Namely, the hierarchical structure or the dendrogram may be presented in
the form of a tree diagram as shown in Figure 1, which is a two dimensional
diagram configurating the fusions between objects which have been con-
structed at each successive level. As shown in Figure 1, when the order

of fusion level is monotonically changing, it is said that the hier-

archical structure possesses a property of monotone transformation.

hierarchical level

ho hl h2 h3..".."..ha hn—2 hn—l

cmm—-
- -

P e T

Objects

B s

This example consists of the nine objects. And there exists the set

6
of cluster C ='{C1,C Cé } at the hierarchical level ha(=h6)' Also,

2!

Qi,OkE:C3and Oie C4. Obviously, this tree has the ultrametric property.

Figure 1. A dendrogram with monotonic invariant property.



These conceptions more precisely are defined as follows.

Definition 1.

Let us define a hierarchical structure H on the set E as follows.

We assume now all possible subsets on E being non-empty A,B,C,D, =--.
If any one of the next three conditions is satisfied for any two sets
A, B then a partition H={ a,B,C,D, -... } is said to be a hierarchical.

i) ANB =¢ (empty)
ii) ACB (2)

iii) A DB

Definition 2.
Let us define a non-negative function h(A) for A€H as an index

characterizing H. Then,

h(B) <h(a) for all A,BeH and BCA (3)
Especially, if h(A)=0 then A indicates the set of each object. And if
h(A) £h(B) then it is said to be weak. Such function h is called the

index of hierarchy and h(A) indicates a level or step of cluster AceH.

If h(B) >h(A) for BCA, then we call it the Znversion.

Definition 3.
A dendrogram is considered as a hierarchical structure H specified

by the index h(-). We shall write such dendrogram by <H, h>

For example, Figure 2 shows a dendrogram with seven objects.
And there exists the following hierarchical structure H.
H= {{1}, {2}, {3}, (4}, {5}, {6}, {7}, {1,2}, {4,5},

{1,2,3},{4,5,6} , {4,5,6,7} , {1,2,3,4,5,6,7} |



Furthermore, we can observe h(Al) >h(A2) = h(A3) =0, h(a) >h(B) and

h(A) >h(C) >h(B) in Figure 2.

01—

O3

O;————ﬁAl i

0s ‘ B
A
06 = '
A
0, As 5
|
Figure 2. Relationship between hierarchical structure

and index of hierarchy.

Definition 4.

h.

Let A(h) be a set of mutually disjunctive partitions at the level

For example, in Figure 2, A(h)={a,c}= {{1,2,3} ,{4,5,6,7} 1.

Then we can define a hierarchical partitioning set H* as follows.

ILet now h_=0<h_<h <...<ha<...<h

be a monotonically increasing

0 1 2 n-1
sequence of the index h(-%f) Then we shall consider the following
partitions.
c® = amy) = ({1}, {2}, ---,(n])
"o o o o o
= = o e 4
? A(ha) { Cl, C2, C3, 'Cmu} (4)
A am ) = {11,2,3, 0, n) )
n_l 14 14 ’ ’

(%)

If we consider the relationship between objects as the similarity,
then the sequence {hu} is a monotonically decreasing. In the follow-
ing discussion we shall use these description according to situations.

_9_



where m = 7n-a indicates the number of clusters at the level h, s
obviously

= > > > ee e > —
n mo ml m2 mn—l 1.

In addition, C%(0 < o < n-1) is a partition at the level ha'

Thus H* is represented by the following,

* 0] 1 2 o n—l}

H* = {c¢, c,c5, -+, C, ", C (5)

Obviously, the partition c® at the level IHX may be generated from the

set of clusters (i.e. partitions) at the level ha v The dendrogram

-1

with the above described properties is called that is a monotonic invariant.

Definition 5.
Let us define an ultrametric produced from a hierarchical structure
H or a dendrogram <H, h> as follows.
67:,7' = min{ h(a)|AeH, for any 7,J €A} (6)
It is clear that Gij satisfies symmetry and reflexivity. The above (6)
is rewritten by the following.

aij < max{§ ij } for any 7,j,keE (7)

ik’
The distance which satisfies the above (7) as the condition of transi-
tivity is said that is an wultrametric. By the duality, if a similarity
§' satisfies the next expression, then it is said to be a inframetric.

§.. > min{ g .

i 2 ik ,ij } for any 7,J,k€E (7)

These inequalities may be always derived from the dendrogram.
In fact, we can observe easily the existence of the ultrametric property

on the dendrograms shown in Figure 1 and 2. And if §..26.,> §, . then
g k= kg

6ijsmaX{5ik }= ij (for any 2, J,keE) , that is, any %2, J, K

construct an isosceles triangle.

-10 -



Thus in the following discussion, we treat only the methods such that
the result of clustering may be represented by the monotonic hierarchical
structure. A clustering method which transforms a D or S into a hier-
archical structure (i.e. a dendrogram) may be regarded as a procedure
which imposes the ultrametric property of a dissimilarity or similarity,
whether the original one is metric or non-metric.
2.2 A brief description of AHC techniques

In general, the hierarchical methods is used as a strategy to repro-
duce strictly hierarchical structure in the data. The first stage in
many AHC techniques is the conversion of the matrix X into an nxx matrix
of inter-object similarities or dissimilarities, with the exception of
some procedures such as Ward's method. AHC techniques first form an
initial set on n clusters (that is, each object is a cluster) and then,
in a stagewise way reduce the number of clusters one at a time until all
n objects form one cluster. Difference between methods of this kind
arises from different ways of defining dissimilarity or similarity
between objects or between two clusters of objects. Thus we obtain
the following definition.
Definition 6.

The AHC method is a procedure which forms the <H , h> with a mono-
tonic hierarchical structure. Namely, by an AHC method, we can obtain

a hierarchical partition

- { Ca, Ca’... ) ® }
1 2 m
o
or in abbreviation
o
g€ = {0 ;06,7
{c.+Cy C,_q}

at the level ha' and which is derived from COL_l at the level hu-l'

-11 -



We can illustrate the typical algorithm of AHC methods as follows.
[ Basic algorithm of AHC method 1]

[Step 1] We consider each object as one cluster, that is, put
label © to each object and CO={C1,C2,"°,Cn}={{l}i2},"',{n}}.

[Step 2] Calculate a dissimilarity matrix D==(dij) where di' is
the dissimilarity between < th and j th objects, and find a pair
of clusters (Cp' Cq) for which the distance between Cp and Cq,
da is the smallest, where Cp' Cqs:Ca_l. Namely,

60L=d;q=min{d;j|o7lscp' OJ.qu,p:i:q} (8)

And merge clusters Cp and Cq and form Ct(=CleC ) . Then
recalculate the distances between cluster C, and all other clusters

%

except C The above 6& is the distance obtained by this merge.

£

[Step 3] Repeat [Step 2] (n-2) times, (namely, o=1, 2, 3,+--,n-1)
or a suitable number of times preassigned. In each stage, record
the information about the pair of clusters merged and the distance

between them.

[Step 4] Lastly, draw a dendrogram.

In case of using similarity matrix S in the above algorithm, set S,
Sij' "similarity", and "max" insteadof]),dij,"dissimilarityﬂ and "min".
Since the purpose of this paper is firstly to discuss the problem
concerned with the relationship between the AHC methods and the fuzzy
relation, we state mainly about the well-known two methods single linkage

and complete linkage. The both procedure define by replacing the right

hand side of (8) in the above algorithm by the following formulas.

= 19 =



Definition 7.
Single linkage method
min{d..|0.eC ,0.eC }
gt pd q

Amin [min{d_ |0 eC
rs' r

& pn Lo ,OseCm}] (1<l ,ms<n-o,l+m,p+q)

A
Complete linkage method
max-{d..|0. eC ,0.eC 1}
gt p dJ q

A min [max {d |O e C
= rs' r

s ,OSeCm}] (l<l,msn-a,l+m,ptq)

A
where the symbol "A" indicates the meaning of definition.

The most essential difference between these two methods is that

complete linkage takes a maximuwn operation and single linkage takes a

minimum operation. In other words, complete linkage is exactly the
opposite of the single linkage. Moreover, it is clear that the both
methods possess the following properties. Firstly, a sequence of

distances, say {6a } ( 0a=0,1,2,-+*), generated by the algorithm
has a property of monotonically increasing, namely,

60=0<5l<62<---<§u<---<6n_l (9)
Let us now denote by A= (Sij) (Zz,§ =1,2,---,n) a distance matrix
derived from a dendrogram formed by single linkage. Similarly, let
vV = (6i') denote a distance matrix produced by complete linkage.

~

Then the following relationships are always satisfied.

§..<d.. (10)
g T 1J

or
§..>d.. (11)
~1g T g

Finally it is shown that a@j or §ij generates the hierarchical

structure, namely the dendrogram.

= 13 =



2.3 Fundamental concept of fuzzy relations

Turning our attention to the fact that single linkage and complete
linkage are characterized only by the maximum or minimum operation, it
is more reasonable that we try to introduce the concept of fuzzy set
theory, especially fuzzy relation or fuzzy graph into the generalized
extension of AHC methods. And it is the next aim to examine the rela-
tionship between fuzzy relation and the AHC methods.

We shall now define the subset A of E to which 11(ilA) or M
represents the degree of belongingness. Under the consideration of
the ordinary set theory, we can regard that if any < €A then ui==1,
and if any 7 ¢A then “72=0’ say, u; is a characteristic function.
But if the value of “i takes in the interval [0, 1], pi is called

a membership function. A subset A of this kind is said to be a fuzzy

subset. We assume two fuzzy subsets A, B and define as follows:
ACB iff u(iIA)su(i[B) for any 7 €E (12)
AAB = {(%, min{ pu(Z|a), u(Z|B) })|ZeE} (13)
AVB = {(7, max{ u(Z|a), u(Z|B) })|ZeE} (14)

Therefore, the operators V and A stand for union and intersection in
the sense of fuzzy set theory, that is, V and A indicate the maximum
and minimum, respectively. And we can define also a fuzzy relation

in Elx E2 as follows:

R=[{(2,5), u(Z,J|R)}[ZeBy, JeE,] (15)

l'
Especially, if E,=E,=E, we have the following fuzzy (binary) relation.
R=[{(Z,§), w,jlr)}| Z,5eE] (16)

where 1J(i,j|R) is a membership function which represents the degree

. . 5 2
of belongingness of pair (z,J) to the subset E =E XE.

- 14 -



We suppose that the value of 1J(i,j|R), in abbreviation u(<Z,j) or
“ij' takes only in the interval [0,1]. Then there are many fuzzy rela-
tions with the several conditions. We shall define the condition of
some fuzzy relations as follows:
(a) u(Z,2)=1 for any Ze€E (reflexivity)
(a)’ w(Z,2)=0 for any 7 eE (anti-reflexivity)
(b) wu(Z,j)=wWg,2) for any 7,jeE (symmetry)
(@) u(é,) 2 max min (u(£,%) 0 (kg )1 (17

for any 7,J,ke€E (max-min transitivity)

(@ u(z,d) < m7i<n [max{u(Z,k) , u(k,j)H

for any ¢,j,k€E (min-max transitivity)

Table 1. Summary of some fuzzy relations

condition
relation (a) (a)! (b) (c) (d)
similitude X X X
dissimilitude X X X
resemblance X X
dissemblance X X

Besides, in the above condition (c), the operation of the righthand
side indicates the following meaning.
mzx [min{p(Z,k) , n(k,7)}1
= max [min{u(Z,1) , u(1l,7)), min{u(Z,2) ,u(2,3)}, -,

min{“(ilk) ,U(k,j )}r Tty min{U(iln) rU(nlj)}] .

- 15 =



That is, the composition of fuzzy relations is a kind of matrix calcula-
tion and an extension of ordinary matrix calculations by product-sum
operation. It is the same in the expression (d). As shown in Table 1,
we can consider the several fuzzy relations by the suitable combination
of each condition. For example, the relation that satisfies the condi-
tions (a), (b), (c) is a similitude relation.

Thus, we can easily find that the non-metric dissimilarity is

identical to the fuszzy dissemblance relation and that the non-metric
similarity is identical the fuzzy resemblance relation. And we can
recognize that there is an important connection between fuzzy relations
and clustering property. Moreover, for simplicity, let RoRCER or
R2ER denote (c), and R*RDOR or RZQR denote (d), where the symbols
"o" and " x " denote max-min and min-max operations, respectively.
We call the max-min and min-max (two-fold) compositio%wthe relation R
and Rz* , respectively. Furthermore, we provide the following definitions.
Definition 8.

Let R denote the max-min transitive closure of a symmetric and

reflexive relation.

RV(ROR)V(ROROR)V... V(RoRo ««c0R) V=.--

———

R
k-fold max-min composition

RVRP VRV --- VRE V--- (18)

Similarly, let R denote the min-max transitive closure of a relation.

R=RA(R*R) A (R*R*R) A --- A ( R¥kR&--+-*R)A - -~

k-fold min-max composition

RAR2Z* AR3* A--- ARK*A ... (19)

(%)

An arbitrary fuzzy relation satisfies the properties of associativity and
commutativity with respect to the operation "o" and "x". But the distrib-
utivity is not always satisfied. For example, let R, S and Q be three
relations, Ro(QeS)=(ReQ)eS, RoQ=QoR. However, in the distributivity,

Ro (QVS)=(ReQ) V (RoS), but Ro(QAS)¥(RoQ) A (RoS) [see Kaufmann (1973)].

-16 -



In addition, it is well known that the fuzzy relations possess
several important properties as follows, and these properties play an

important role in the agglomerative type clustering.

~ 2 3 4 ~ A
R=RVR VR VR v---—>R2CR (20)
RPC RE*E = BesR is transitive
2 ~
R = R—>R = R<>R is transitive (21)
k+1 L , . .

If R = R for any positive integer k, that is, idempotent,

&= RVREVRIV - VE (22)

and k is sometimes called a number of reachability.

R = RVR°VR V--- VK" (23)
Let R denote the min-max transitive closure. Then

i) R=R

ii) RoR = R*R (24)

where ii) is the relationship between max-min and min-max, and R is
a complement of R. In the above notations, without the loss of general-

. v . A k .
ity we can put R, A, D ,Rk* instead of R, V,C, R, respectively.

We can find more the relationships between a relation and a graph.
Namely we can identify an ordinary relation with a graph. By the similar
consideration, a fuzzy (binary) relation may be considered as a fﬂzzy
graph. Accordingly, let G denote a graph the nodes of G is the set
of objects and each weight of G corresponds with each value of member-

. . 2
ship function on E .

-17 -



3. On the evaluation of the AHC methods by fuzzy relations
3.1. Relationship between the AHC methods and fuzzy relations

Since the investigations for evaluation or comparison of AHC methods
are only little discussed in formal works up to the present, it is
really important and necessary to discuss them in order to study cluster
analysis. Therefore, in the following, we shall turn our attention to
these problems. By the aid of the results described in the previous
section, firstly, we can easily find the following property.

Property 1.

An ultrametric inequality for the distance is identical to a min-
max transitivity, that is, anultrametric is a fuzzy dissimilitude relation.
similarly, an inframetric is a fuzzy similitude relation. Occassionally,
the former is called the dissimilarity relation, the latter is called

the similarity relation. And either construct the equivalence relation.

We can easy prove this property by comparing (7) with (d) of (17).
Let now aij be an ultrametric distance. Then,

S..
1d

I

min [maX'{6ik 'Skj 11

IA

max { éik , (Skj} (for any keE)

Therefore it is obvious that (7) implies (d) of (17), and is implied
by (d) of (17). And we can find the analogous relationship about
inframetric.

We next consider a path or chain from 0, to Oj (i.e. an ordered
r-tuple with or without duplication) in the finite graph GCEXE (i.e.
in the relation R especially the dissemblance relation),

wij= (i=io,il,i2,"',ir_l=j) (25)

where iteE, t=0,1,2,---,r-1 .
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With each path (io, il, i2’ cee, ir—l) we shall set a value defined by
the following,

2(10,11,7,2,---,7, )

r-1

=max{ pu(< ,711), U(Y/lﬂ/

o Yoo w(E oyt )} (26)

2
for abbreviation, rewritten the above

L(Z,5) = max {u(it_ ,7,) } (27)

l<t<r-1 C

i

Let us now consider all possible paths existing between O’L and Oj
(7, €eE) and let Wij be the set of all such paths. Namely,

.. = w., .

Wi,J { 1J |

Moreover, we shall define the minimal path W;J from 07; to Oj by

=(7/0,7,l,---,$ )} (28)

W, .
1J r-1

L*(72,7)

min{ 2(<Z,7)}
w¥ .
1d
= min [max{u(to, To)eul g, 2y) e w0 )}
o (29)
Then we can obtain several relationships from the discussion by

Kaufmann (1973).

(1) Let RCEXE, which is a dissemblance relation, then we have
Qz(i,j) = u(z,J | RK* ) for any 7,J eEXE
where zz(i,j) indicates the strongest path or the largest link distance
existing from 0, to Oj of length K. This is proved by induction as
follows :
a) if k=1, then &'(%,5)=u(%,J|R).

b) if k= 2, then zz(i,j) =min{ 2(Z,5)1}

min [max{u(i,il ] R),u(il,le)}]
L1

w(Z, J|ReR)
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because, in general,
1HiJLMR)=I%n[mmdu@J4RL pk,dR1 (4,4,keE).

c) if k=3, then

X, e ey _ ; . .. s @
23(2,4) = min [max{u(Z,7 |R), w(i ,i,|R), w,,J|R1
11,12
. * , . . . .
= min [max{22(7,,7,2), u(7,2,J|R)}]
2
= min [max{u(i,ile*R), p(iz,jIR)}]
12

u(i,le*R*R),
Therefore we can obtain

E(E,3) = W, |RaRee - 4R) = u(d, g [REF) (30)

(k-fold min-max composition)

(2) We can find the following relation.
2¥(4,4) = u(£,4|R) (31)

where R is the transitive closure of a dissemblance relation R.

(3) Furthermore, we may explain

* . . . .
27<(7’IJ) - Q/jsn(llgj)
where l;:gn(i,j) indicates the value of the strongest path of length
less than or equal to n from Oi to Oj' After removing the closed-loops
or circuits in G, there remains a chain which has at most length #.

Thus, the above (3) is built strictly.

Property 2.

By the above (2) and Definition 5, we can see that 2*(Z,j) has the
ultrametric property. That is,

2*(1,d) <max{2*(Z,k), 2*(k,§)} (Z,5,k €E) (32)

of course, 8*(Z,Z7) =0, 2*(,75) =2%(j,7).
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Next, we shall verify that there exists a maximal one in the family

of ultrametric Gij which is dominated by the dissimilarity dij' namely

We now denote such § by
* ..
;= sup {dij} , 1,J€E (33)
obviously,
8% . = §..}< 5 .
¥ sup{ 7/J} sup [max{éik ,de}]
= max [SuP{Sik} ,sup{ékj}]
_ * *
= max{dik ’6kj (34)
Thus, S;j is an ultrametic.
And such &* is called a maximal dominant ultrametric. This is identical
to one which is a subdominant ultrametric called by M. Roux.
We can now see the next interesting property based on the above results.
i i i o s o< d. ..
We assume the ultrametric 6ij being dominated by dﬂg’ namely 613"d$3

Noting that dij is the same one as u(Z , J), we can find that

.} < max {a4. . Y=0(7,4) .
'ty T1ctsr Ct-1rtt

6; .< max | Gi
I 1ct<r “t-1

Furthermore since a minimum of £(Z,J) is &*(Z,J),

. * (7 ) s *
2(2,J) 2 2% (z,g) -‘Sij (35)
* .
where Gij is (33).
Moreover let us consider a path whose length is one, that is,
L(Z,d) = u(i,le), then &(Z,J) =<iij and always L*¥(2,5) s (2,J) by (29).
Thus,
d..
d
By (35) and (36), we can obtain

> 2% (4,4) (36)

* *, 0 e
Sijs L7°(7,9) Sdij
However, Szj is a maximal of Gij' therefore 2*(7,j) must be identical

to 8*(Z,d). Namely 2*(i,j)==6;j. Thus it is easy to see the following.
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Property 3.

2*(4,7) is a maximal dominant ultrametric. In other words,

u(i,j|R) or R generates an ultrametric which is maximal dominant.

We examine, in the following, the connection the fuzzy relation and
the result of single linkage. We shall denote a sequence of the hier-
archical index, which is derived from A=:(gij) by {ﬂa} (a=0, 1,--+, n=-1).
Then the dendrogram may be represented by <I{,fi>. And the present
problem is to verify that <H,h> produced by single linkage is identical
to the transitive closure of D. Before the following statement, we show
that these relationships are immediately clarified by the next simple
illustration.

Example 1.
We set E={1, 2, 3,4} and a dissimilarity matrix D==(dij) (i.e. dis-

semblance relation).

.

Clustering D by algorithm of single linkage, we can represent the result
by a dendrogram in Figure 3. In this example, at stage one of the
clustering process object 2 and 3 are fused to form a group, because
d23==0.l is the smallest value in D. Next we calculate the distance

between this group and the remaining two objects, 1 and 4 as follows.

} =0.3=4d

21

= mln{d21 ,d31

248347 = 0.4 =24y,

d(23).1

1

d(23).4 = min {d
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and form a new matrix D’.

|

The smallest value in D' is d4l=0°2’ and so objects 4 and 1 are fused and

O oo
O b N

become a second group. Recalculate the distances and we obtain the matrix D'’.

(1,4 12,31
rro 0.0 0.3
b= [ 0.0 ]

Lastly fusion of the two groups take place to form a single group.

Figure 3. Dendrogram produced by applying single linkage
to a dissimilarity matrix.

Using this dendrogram, we can make A==(6ij) and index { Ea .

Sii =0 = ﬁo (7=1,2,3,4)
823 = 0.1 = ﬁl
324 = 0.2 = ﬁ2
S12 - 513 - 524 - 534 = B3 = 53

Thus a dendrogram <H , h> for matrix D was constructed.
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Here we now consider the case that single linkage produces c®

a . . e :
from C according to Definition 6, then we can write as follows,

. . . -1
d =min{d..|Zec, jecCc ;C,C ec® "} (37)
pq d P q P q
Accordingly,
2 ; a-1
h =min{d | for any C ,C eC } (38)
a rq p q
and ﬁa >ﬁa—l (a=0,1,---,n1). Under the above relations (37) and

(38), let us consider a path defined on <H, h>

L(Z,7) = max {d }

l<t<rl “g-1"%%

then %(Z,j) satisfies all the properties of path described previously,

. -1 . .
Next, let CA 7 CB denote two clusters in Ca , then it is easy to find

that:

i) if CA=CB' then L(Z,g) '<'hO(. for any z,JeCA(=CB)

ii) if CA*CB, then L(Z,d) >ﬂoc for any 7 €C

, C
g JE

5"
Moreover, considering SL*(i,j) =min{2(Z,45)} on <H, h>, we can observe that

the next i)’ , ii)’ are correspondent with the above i), ii).

Y2 * ;. . o . . _
i) SL(%,J)fha 7,,,7€CA(—CB)

P ke - -~ . .
ii)" 2 (7/,J)>ha 1eC ., jeCy

Especially we now specify as CA=Cp' CBch ( Cp , CC[ € Cu_l ), that is,
consider two clusters which are merged at the next fusion-level ﬁcx' then
it is clear to be always %% (%,7) gflu. In the other hand, £*(Z,7) is a
maximal dominant ultrametric by Property 3. Therefore, 2*(%,J)
consists with Eoc' accordingly, ﬁu is a maximal dominant ultrametric and

is derived from the transitive closure of a dissemblance relation,

namely a dissimilarity matrix.
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Finally, summarizing the previous discussion, we can obtain several
important properties.
Property 4.
(1) A distance matrix A= (Sij) derived from a dendrogram formed by single
linkage possesses the maximal dominant ultrametric property and generates
a fuzzy dissimilitude relation, namely, which is reflexive, symmetric
and min-max transitive.
(2) The distance matrix A is identical to a fuzzy min-max transitive
closure derived from the original dissimilarity matrix D= (dij)'

(3) These results include fairly well-known several methods which are

proposed by many researchers.

For example, an algorithm to construct a kind of hierarchy proposed
by M. Roux is surely identical to single linkage. Furthermore, a hier-
archical r-clique grouping procedure by E. Peay is really equivalent to
the operation of transitive closure. And, of course, minimum method
(Johnson) , the nearest neighbor (Lance and Williams), elementary linkage
analysis (McQuitty) are the same or almost same methods as the solution
of transitive closure, since these methods perform the clustering

process by the use of minimum and maximum operation.

In the above discussion, it is needless to say that we can set
"similarity", "similitude", "max-min" and "S" instead of "dissimilarity",
"dissimilitude", "min-max" and "D" without the loss of generality.

In addition, we can see another interesting characteristic.
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Property 5.

Let us set Gij:zdij’ then we have a minimal spanning tree (MST).
In other words, we shall now denote by T the relation or graph,

T = (tij)'

where ti' =
J 0

, 1if Gij < dij

According to Definition 7 of single linkage, the fusion distance at

the level Ba is exactly the smallest one between objects or clusters.
Accordingly, let us consider two clusters Cp' Cq fusing successively at
the level ﬂa’ it is obvious that there exists exactly one distance which
satisfies Sij:=dij (except for the case of tie).

Thus, we can observe easily that T derives a MST. A MST is a
tree whose weight is minimum among all spanning trees of graph (i.e. re-
lation). A tree is a connected graph without circuits and a spanning
tree of connected graph G is a tree in G which contains all nodes (i.e.
objects) of G. And we define the weight of a tree to be the sum of
the weights of edges (i.e. each element of relation or dissimilarity
matrix) constituting the MST. Moreover if we consider complete linkage
method, we can find the analogous property as follows.

Property 6.

A distance matrix v:=(§ij) derived from a dendrogram formed by complete
linkage method satisfies the ultrametric property and constructs a fuzzy
dissimilitude relation. However, in general, the above V is not always
coincident with the transitive closure. But we can form a kind of

spanning tree by the similar procedure as the above described method.

.>d.., there exists a kind of spanning tree which

Since always §.
~ .7 g

derives from §..=d...
~1d 1d
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Now it is easy to verify each characteristic described above.
Example 2.
Citing the result in Example 1, we can obtain

N 0.0 0.3 0.
A=(6..)= 0.0 0.
0.

O Ww
(e eoNeNe]

- [ 0.0 0.3 0.3 0.2
DxD=D = 0.0 0.1 0.3
0.0 0.3
Similarly, | 0.0
3% 2% [ 0.0 0=3 0%3 0.2 T
i e 0.0 0.1 0.3 | =p**
0.0 0.3
| 0.0 |
Therefore, D *= 3"‘=D4*, and
[ 0.0 0.3 0.3 0.2 j
v 2% 0.0 0.1 0.3
b =DAD = 0.0 0.3
Thus we can see 1V3=A. - 0.0 .
Furthermore, comparing D with A or D,
612 = dl2 = 0.3
014 = d34 = 0.2
623 = d23 = 0.1
Then,
0.0 0.3 0.0 0.2
T = 0.0 0.1 0.0
0.0 0.0
0.0

Surely, this matrix generates a minimal spanning tree.
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3.2 A measure of difference between two similarity matrices

"How to get some good measure of evaluations and comparisons of
clustering techniques" is a common problem encountered in works.

On these characteristics of hierarchical structures, many workers have
discussed from various points of view. For example, Hartigan (1967)

has introduced a measure of distance between two similarity matrices

from a statistical point of view, and it is similar to a measure of
stress proposed by Kruskal (1964), Farris (1969), Rohlf and Sokal (1962)
have investigated the so-called CPCC (Cophenetic Correlation Coefficient)
and it has been also much used practically. On the other hand, Jardine
and Sibson (1971), Lerman (1970) have examined a method of evaluation
based on an ordinary relation. Clearly, our situation is the extension
of the latter.

As we mentioned already, the AHC methods that proposed up to the
present are considered as an exact method to form the fuzzy equivalence
relation itself by a kind of successive approximation. We are interest-
ed, in the following, to evaluate the difference between two distance
or similarity matrices. We need an index which examines a difference
between the original similarity matrix and the matrix derived from a
dendrogram. Since the distance or similarity formed by single and
complete linkage is regarded as a fuzzy dissimilitude or similitude
relation, as the extention of ordinary symmetric difference, it is
natural and valid that we consider the fuzzy symmetric difference as

a measure of evaluating and comparing the result of clustering process.
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Definition 9.

Let now S= (s..) and S*= (s*.)
g 1

denote the original and derived
similarity matrix, respectively. Then, the fuzzy symmetric difference
is defined as follows:

p(s,s*) = (SAS*)V (SAS*) (39)
where S and S* represent the complement of S and s*, respectively.
Though we will mainly describe here about the case of similarity, our
consideration can be easily extended to the case with distance measures.

And let pi. denote an element of matrix p(S,S*), then we have the

following relationships,

= ..As%. s..As*.
Pij (SlJAle)V(S%JAS’LJ)
= j;{ l-l s..+s%. - l] +|s. .-s¥. [}
2 J ] g Ttd
accordingly,
) * _ 1 * ok
if Sij+sijSl’ then Pii=73 {S’Lj+s7lj+lsij sijl}
. * 1L * -s*
if sij-+sij:>l, then pij'_l 3 {sij-ksij Isij $j|}
where s..=1-s.., s¥.=1-s*.
g %] ] 1J
Thus,
max(s.., s%.) if s..+s%*.<1
Pe. = { id J d 1 (40)
v l-min(s.., s¥.) if s..+s¥.>1,
1d 1d T 1J

where the range of pij is in the interval [0, 1].
We shall call B a fuzzy distance, since it is a distance taking
fuzzy informations into consideration. In many cases, it may be

convenient to employ a scalar rather than a matrix for comparison

between relations. Therefore, we investigate a degree of goodness of
fit between two relations by ameasure of p(s,s™), r= zz pij
<g
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In the sense of fuzzy set theory, a difference between S in itself is
not always zero,namely let us write it by pO(S,S ), ro= Hpo( S,S)I! =
|!S/\§-H is not always zero. Moreover, the maximum difference is given
by r' = || sVs H . Thus, we can obtain the expression rysrs r’.
Using these results, we propose an index.

Definition 10.

We shall denote by r* the index which indicates a fuzzy degree

of fitness between two relations.

* ’
= - - 41
r { & ro)/(r ro) (41)
Obviously, this expression satisfies the inequality O0< r¥<1.
Therefore, we can examine a degree of the goodness of fit by the r™'s .

Such consideration based on the fuzzy symmetric difference is considered
as the generalized extention of the absolute deviation or the rank order
statistic in the traditionally statistical method.

Example 3.

Let us suppose we wish to cluster the two sets of data in which
two measurements are observed for eachof fifty objects, respectively.
These sets of data are shown as scatter diagrams in Figure 4-(A) and (B).
Data (B) seems to consist of a single group apparently and data (A)
consists of several well separated and compact groups. The clustering
methods to be used are single linkage and complete linkage, and the

results are shown in the following table.

Table 2.
data set
Method (n) (B)
complete linkage| 0.229 0.318
single linkage | 0.235 0.286
# of reach-
6 12
ability (k)
# of size (n) 50 50
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(A) 1In this figure, it seems that there exist
several groups well separable in shape.
x2
56
L
481 . o
L] - & L]
s ° " e : .
° L] L] L
L] L
32 .
L]
L] L 1] L] °
24 . ¢
° ®
LR N J
16/ . .
L
L L
8-_ L d ® L]
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(B) 1In this figure, the configuration
of data is considerably fuzzy.
Figure 4. The sets of data constructed by generating

random variables for experiments.
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The results shown in the above table suggest that our forcast is
almost surely valid. Examination of the results obtained from data (B)
shows that single linkage is very likely to be the situation rather than
complete linkage. However, the two values is not almost different and
both values are larger than the values produced from the data (3).
Investigating the results for data (A), we can observe that complete
linkage is little superior to single linkage but almost same. The above
results illustrate clearly that data (A) is more closer to the hierarch-
ical structure than data (B). Finally, observing the behavior of index
r*, we can evaluate more quantitatively the validity of clustering
process which have judged by empirical and subjective interpretability

as usual.

3.3  Extension of single linkage and complete linkage

We shall now attempt to modify the algorithm of single and complete
linkage, and to extend to more general case. Usually let us now define
the dissimilarity (or similarity) measures between clusters used by AHC

techniques is represented by the following recurrence formula.

-1 L -
a, =5 (d +dqr)+(y 2)‘dpr a (42)

tr pr QPI
where dtr is the distance between a cluster Cr and a cluster Ct formed
by the fusion of cluster Cp and Cq, and dij is the distance between
clusters Ci and Cj' And y is a parameter and its value is given
beforehand in the interval [0, 1]. If y=0, we can obtain single linkage

and if y=1, then complete linkage. Moreover, if y=-%—, then the above

relation shows the so-called weighted pair group (WPG) method proposed
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by Sokal. Surely,

if y=0, then

d,, = % ( dplﬂ+dqr) - % l dpr- dqr | = min{dpr , dqp} (43)
if y=1, then
a, -1 (a +gq )+i|d -d _|=max{a__,d } (44)
r 2 pr qr 2 pr qr pr = qr
and if y= 1/2, then
d,, = %%-(dpp-kdqp) , namely average distance. (45)

Obviously, all of the results given by applying the above formula to

the data, that is dendrograms, have the monotonic hierarchical structure.
Therefore, by changing Yy variously, clustering schemes with distinct
characteristics can be obtained. Especially, if we attempt to adjust
the value of Yy keeping the value defined by the expression (41) relative-
ly as small as possible, then we can investigate the solution which

is more reasonably fitting to a given data.

Thus, it has been shown that our approach includes a natural
generalization and extension for many AHC methods, especially which are
similar to single linkage and complete linkage. And we shall call this
method modified linkage technique.

Example 4.
We shall investigate several illustrations using artificial data.

(1) We consider the next relation as first example,
1.00 0.05 0.20 0.50
1.00 0.20 0.40
1.00 0.01
1.00

R =

R is a resemblance relation (i.e. similarity), so we compute a transitive

closure by max-min composition and obtain the following relation,

1.0 0.4
R = 1.0

H O O
O NN
= O O O
O N b O,
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In this case, the number of reachability is two. And R coincides with
the result of single linkage. Let us consider the complement of R and

denote it by R

O O O
O W
O OO o
O 0w o U

—

and we can obtain a dendrogram <H,ﬁ> characterized by the index {ﬁa}=

{ﬂo,ﬁl,ﬁ2}=={0, 0.5, 0.8} and the hierarchical structure H={{1}, {2},

{3}, {4}, {1,4}, {1,4,2},{1,4,2,3}}. Of course, it is clear that R

generates a dendrogram in itself. Then we may consider each complement
n__mn we " nw— n n_mn

" nﬁau, "g", namely A, , h , H ,

of them instead of "A", " S..
1 a

%]
and define a dendrogram <ﬁ)ﬁ>.

In the case of complete linkage, similarly, we can obtain

1.00 0.01 0.01 0.50

vV = (§;.) = 1.00 0.20 0.01
J 1.00 0.01
1.00
where V, S%j are complement for V 'éij respectively. And it is

obvious that %hrepresents a dendrogram.

Moreover, in the formula (42),

i) if y=0, r*=0.0 (complete linkage)
ii) if y=1/2, r*=0.097 (WPG)
iii) 4if y=1, r*=0.165 (single linkage).

Therefore, in this case, complete linkage gives a best fitting solution.

(2) Next, we consider the following relation

1.0 0.7 0.
1.0 0.
1.

[@Ja\olNe)]

PO OO
O U1 Oy @
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Then,

R 1.0 0.7 0.7 0.8
R=RoR oR = 1.0 0.9 0.7
1.0 0.7

1.0

This example is, in fact, the complement of D in Example 1 and
the number of reachability is 3 in this case (Surely, we can verify
the relation D=R).

Moreover, we can obtain

i) if y=o0, r*=0.182
ii) if y=1/2, r*=0.045
44y 1f =1, r*=0.0

Thus, in this example, single linkage is the best solution and this

result gives completely the opposite feature to the above (1).

Example 5.

Using the sets of data in Example 3, we shall examine the
behavior of r*'s with the change of y in (42). Table 3 shows
the result of such experiment. obseving this table, we can find
that it is adequate to take y's about 0.5 for each data.
However, the values of r* indicate that data (A) is closer to the
hierarchical structure than data (B). This situation may be also
observed by the size of reachability. Namely, the number of reach-
ability obtained from (A) is six and that of (B) is twelve, thus

the former is closer than the latter to the hierarchy.
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Table 3. The behavior of r*'s with the change of Y.

data set
-1
y(X10 7)) (a) (B)
0 0.229 0.318
1 0.201 0.291
2 0.173 0.262
3 0.150 0.260
4 0.136 0.237
5 0.136 0.222
6 0.149 0.214
7 0.163 0.271
8 0.179 0.279
9 0.200 0.286
10 0.235 0.286
# gf.reach— 6 12
ability (k)
# of size (n) 50 50

Example 6.

Successively, let us investigate the several artificial data as
in Figure 5. We shall calculate the Euclidean distance di' among the
objects and form a distance matrix D==(d;j), where d;j is derived by
dividing dij by the maximum element in it. Then, a matrix S=(s..) is

%

produced by the transformation of dZi' for example, which is represented

L%

by equation sij==l—dzj. Thus, the matrix S is immediately considered
as a similarity matrix, i.e., a fuzzy relation.

The above consideration is applied to our example of artificial
data, and the results of computation are shown in Table 4. From these
results, we can recognize the following characteristics in each figure
of Figure 5. Firstly, we shall examine the three methods, that is,
single linkage, complete linkage and WPG method. In figure (A), there
are three clusters of the structure which is cloudly compact and appar-

ently distiguishable, that is, the between-cluster distance is much

larger than the within-cluster distance, and the gaps or moats between
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clusters can be apparently observed. In this case, complete linkage
and WPG method are better and single linkage method give the poor results.
In figure (B), when there are two clusters which are internally
homogeneous but connected by the so-called bridge or chain between them,
it may be said that complete linkage and WPG method are again better
than single linkage. Furthermore, let us consider the example which
makes within-clusters more vague such as in figure (D). Then it is
found that the values of r* for complete linkage and WPG method
become larger than the values of r* of figure (B), and the values of
single linkage are slightly larger. Thus, it may be reasonable if it
is scarcely reasonable to apply complete linkage and WPG method
to the clusters of such noisy structures as in figures (B) and (D).
And in figure (C), the two clusters are composition of several
clusters connected by bridges. In this case, it is seen that the gaps

among two clusters can be detected by any of the three methods,

but complete linkage and WPG method and single linkage produce different
results within two clusters. More precisely, we find a dendrogram
which has the chaining effect by using single linkage while we find a
dendrogram with reasonably compact clusters by complete linkage and WPG
method. As shown in the above discussion, the similarity of complete
linkage and WPG method which is empirically known is apparent according
to the value of r* shown in Table 4.

Finally, we consider the situation in which the shapes of clusters
are represented as figures (E), (F), and (G). These clusters possess

the structure which can be characterized by non-ellipsoidal or serpentine
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shapes, but the border-lines of clusters are fuzzy. And it is immedi-
ately found that a difference between three methods can almost not be
recognized. Under the consideration that complete linkage is related
closely to single linkage by means of using max and min operations but
the usage of those two operations is entirely different, we can find
these results as a most interesting features. In these examples, it
is suitable to utilize single linkage rather than complete linkage and
WPG method, since the value of r* in (E), (F), and (G) are relatively
smaller that the value of (A), (B), and (D). Thus those properties
discussed above agree with the fact known empirically and subjectively.
Moreover, observing the behavior of r*'s with the change of y's,
we can see relationships between the obtained relations and the given
data. For illustration, in the data (A), (B), (C), it is seen easy
that the maximum distance between clusters is significant to investigate
the difference of clusters which are well separable or compact in shape.
On the other hand, each value of r* in the data (E), (F) and (G)
indicates that each data is spread in shape which is relatively fuzzy.
And it is seen that the minimum distance between objects (i.e. the
nearest neighbor) plays an important role about construction of clusters.
Furthermore, observing a degree of convergence to the transitive closure
by the number of reachability, say kK, we can understand that the values
of k represent a degree of closeness between the hierarchical structure
(i.e. dendrogram) and the configuration of original data set. That is,
it is clearly indicated that the data (A), (B), (C) and (D) are gathered
in spherical compact shape, but that the data (E), (F) and (G) cannot be

distinguished groups in the sense of well separable shape.
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Table 4. The r*'s computed for each data set in Figure 5.

Data set
-1
y(X10 7) (n) (B) (c) (D) (E) (F) (G)
0 0.022 0.118 0.121 0.134 0.272 0.326 0.305 (complete linkage)
1 0.019 0.108 0.102 0.128 0.268 0.311 0.294
2 0.022 0.100 0.089 0.136 0.254 0.312 0.286
3 0.031 0.099 0.084 0.156 0.242 0.308 0.279
4 0.047 0.107 0.093 0.173 0.239 0.314 0.280
5 0.069 0.173 0.119 0.211 0.202 0.324 0.284 (WPG method)
6 0.100 0.206 0.153 0.256 0.231 0.337 0.302
7 0.140 0.259 0.191 0.306 0.269 0.352 0.337
8 0.189 0.314 0.209 0.356 0.291 0.366 0.367
9 0.245 0.368 0.245 0.395 0.320 0.385 0.375 ' ‘
10 0.305 0.415 0.275 0.421 0.344 0.394 0.390 (single linkage)
* of meach- 4 6 6 7 11 10 13
ability (k)
# of size (n) 20 20 30 18 20 25 20
4. Comparing partitions obtained by clustering

Though there are many problems to be faced in using cluster
analysis in practical, the most important and difficult are to handle
the following situations:

i) examining the two dendrograms obtained by applying differ-
ent clustering algorithms to the same data.

ii) comparing and evaluating between two dendrograms based on
different sets or same set of data, and examining partitions
generated from those dendrograms.

iii) evaluating thé number of clusters, that is, comparing
partitions specified on a dendrogram.
In short, there exist always the problems of comparing between dendro-

grams and investigating the partitions formed on dendrograms.
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Nevertheless, most studies in the past were mainly concerned with
the proposal of clustering algorithm, but in recent years there are an
increasing number of studies which have utilized and emphasized the
evaluation and stability of clustering techniques as mentioned above.

The present section aims to describe and discuss more fully for
practical use the procedure of evaluating the stability of clusters or
the sensitivity analysis, and to propose some procedures of the compar-
ing the partitions by clustering or of the estimating the number of
clusters.

4.1 Comparison between two dendrograms

Firstly we shall consider to examine the two dendrograms obtained

by applying distinct clustering algorithm to the same data set.

h>, <H_,t> , and represent the

We now denote two dendrograms by <H B

A,

relations (i.e. similitude relations) given by the both dendrograms by

R

g R

B respectively. Then it is natural to apply the conception of

fuzzy symmetric difference described in the section 3.2 to this case.
Namely, we can investigate the relative difference of two dendrograms
by the measure p (R 'RB)' We shall verify the validity of our consider-

ation by simple illustrations.

Example 7.
We put E={1, 2, 3, 4} and denote two dendrograms by <HA’h>' <HB,t>
namely,
HA = {{l}, {2}1 {3}1 {4}1 {114}1 {213}1 {1141213}}
{ha}= {ho,hl,hz,h3}={l.0, 0.8, 0.6, 0.4}
and
Hy = {{1}, {2}, {3}, {4}, {1,3}, {2,4}, {1,3,2,4}}

{toc}= {to, tyr tys t3}={l.0, 0.7, 0.5, 0.3}.

ll
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Accordingly, we can obtain two relations, RA and RB' from <HA'h> and

<H,,t>, respectively.

B’
[ 1.0 0.4 0.4 0.8 ]
R = 1.0 0.6 0.4 for <H, , h>
A 1.0 0.4 4
1.0
1.0 0.3 0.3 0.5
R = 1.0 0.7 0.3 for <H £>
B : !
1.0 0.3 H
L 1.0
Therefore, using the expression (39),
0.0 0.4 0.4 0.5 |
P(R,,Rp) = (p..) = 0.0 0.4 0.4
A'"B
tJ 0.0 0.4
and L 0.0 |

r = Zz Pss = 2.5
i<t
Thus we can see the relative difference or association between RA and RB'

Example 8.

We shall examine a degree of the association between the methods.
Citing again the relation R in Example 4-(2), we compare the results
of three methods, that is, single linkage, complete linkage and weighted-
pair group. Let us represent each dendrogram formed from these three

methods by RS, RC' and Rw, respectively.

1.0 0.7 0.7 0.8
R, = 1.0 0.9 0.7
1.0 0.7
1.0

1.0 0.5 0.5 0.8 ]
R = 1.0 0.9 0.5
& 1.0 0.5
1.0
(1.0 0.6 0.6 0.8
R = 1.0 0.9 0.6
@ 1.0 0.6
1.0
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Thus 0.0 0.5
0.0

o O O
o H v
O O O O
o NN

Therefore pl=”p(Rc, Rs)” =2.3.
Furthermore, in like manner,

p,=llo (R, R =1.9.

since Py <pl, finally, it may be observed that RS is close to Rw rather
than R .

c

Secondly, we shall think a procedure which compares the set of
partitions generated from the two dendrograms, which are obtained by
applying different methods to the same data.Let us again denote two

dendrograms by <H t> and represent those relations (i.e.

A'h>' <H

BI

similitude relations) by R,, R Then these similitude relations may

p*

be decomposed in the following form

RA=}}IZhZ-5A(Z) (O0s<h;<1)
(46)
RB=¥ntm-BB(m) ( Ost <1)

where R are equivalence relations in the sense of ordinary set theory,

and h, R, or t R, shows that all the elements of the ordinary relation
14 m—B
BA or BB are multiplied by hZ or hB. For example, if
1.0 0.3 0.2 0.5
1.0 0.2 0.3
R= [ 1.0 0.2
1.0

Then,
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Thus,

R = Vhe+R(a)
hOL o=

1 0 0 0 1 0 0 1
= max 1.0 - L 0 O , 0.5 L 0 0
1 0 1 0
1 1
R(0.0) R(0.5)
1 1 0 1 1 1 1 1
0.3 1 0 1 0.2 1 1 1
1 0 1 1
1 1
R(0.3) 5(0.2)

(47)

Especially, we try to cut the two dendrograms at a level a(0<a<1l).

And we assume hZ >0 >hZ tm> o >tm for the cut at the level a.

+1, +1

Then we can obtain two partitioning sets,

C, = {Al,A2, e ,AK} where K=n-1

(48)
-{s.,B., - ,B.} where [=n-m
B 1" 727 "L

This situation may be shown schematically as Figure 6.
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produced from the two dendrograms.
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Therefore, using the relationship of decomposition for a similitude

relation, namely (46), we can generate the two relations

* _

RA—IYhZEA(Z) (a<h,) (49)
[/

*-—

Ry = 1}_rlntmgB(m) (a<t, ) (50)

In this case, firstly, it is reasonable to consider p(Rz ,Ré ) as an
index for the comparison between two partitions. However, if we turn
our attention to the connectedness between objects rather than the differ-

ence between trees, it may be seemed that it is natural to use the inter-

section of two relations, say R* and R* (of course in the sense of fuzzy

A B
set theory). Thus the next relationship can be defined,
R*¥ ,R*) = R*AR* | 51)
T(R /1 Rp) = R ARy >
And let 1.. denote an element of matrix t( R*, R*),
1J A B
™= }) T (52)
i<j ¥
or
T* = . (53)
ENIAS
1<g

To examine clearly what has been described previously, we shall illus-
trate the following example.
Example 9.

Let R, and R_ cite from Example 7 and set the level of cut at

A B
o=0.45. Then, .

Fl.O 0.0 0.0 0.8 -
RY = 1.0 0.6 0.0
A 1.0 0.0

- 1.0 ~

1.0 0.0 0.0 0.5 -
2 = F 1.0 0.7 0.0
B 1.0 0.0

5 1.0 -
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accordingly, by (51),

* * _
T(RA ,RB)

= O OO
O OO Wwm

and we can obtain Tt*=1.3 and ™ =0.7.

*

On the other hand, if we calculate op( RZ, R, ) using (39)

0.0 0.0
0.0

o O O
O b O

* *y\ —

O O O O
O O ow

and r = zz CE =0.9,
i< "

In addition, we shall consider another relation

1.0 0.3
1.0

= O O
L T )
O w um
H O OO
O wJw

Then, T*==O, and yet %*==O, moreover, ¥ =2.6, by using p(RZ ,RZ )

After all, we can find that 1* or T* indicates a kind of degree of
agreement between two partitions. That is, if t*'s is large then
the construction of two partitions is similar to each other, if ™'s
is small then it may be consider as the opposite. In addition, r
indicates a deviation or a kink of error between relations formed by

two partitions.
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4.2 Evaluation of clustering process by the sensitivity analysis

The most fundamental problem in cluster analysis is the absence
of a satisfactory definition as to what the term cluster means.
Of course, as most clustering techniques highly depend upon the defini-
tion of the term cluster and the nature of data, that is, the form the
type and the quantity and so on, implicit assumptions are set there
about the structure present in data. In this section, the main purpose
is to describe and investigate more fully for practical use the procedure
of evaluating the clustering process, and to propose a procedure of the
estimating the number of clusters. As we described in the previous
section, single linkage, complete linkage and modified linkage are more
flexible and suitable for practical use in many AHC methods. It is
actually interest to indicate the number of clusters, but usually it
is more difficult to do so. Empirically, it is said that examination
of the dendrogram for large changes of fusion level would be useful.
But it is statistical informative to determining the number of clusters
based on the observation of a dendrogram. Therefore we shall serve
this section to discuss or examine the connection between a brief statistical
approach and our consideration described already in the previous sections.

For this purpose, firstly, we may use various consideration
described the above section, namely comparing procedure between parti-
tions. However, if a little restriction has been admitted, we can
take account of another useful approach for the evaluation of clustering
process. Though various attempts have been made to handle this kind

of problem, the most important point is how to define the term cluster.
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Most proposed definitions consist of statements such that a cluster is
a set of objects which are similar to each other, and therefore objects
from different clusters are dissimilar. But these definitions are fuzzy
and vague. Accordingly, we have to fix a paticular definition about
the shape of a cluster. Yet, partitioning the data set into various
combinations of clusters, we must examine and assess the data. In this
section, therefore, we shall merely make an assumption that a cluster is
spherical and relatively compact in shape and that the dissimilarity or
similarity is a metric.

Next we suppose that notations and criteria of the number of
clusters are derived from the following basical relationship

T=W+B

where T is the total dispersion matrix, W is the matrix of within cluster

k

dispersion, that is, W==iZf% where Wi is the dispersion matrix for the
7 th cluster Ci and B is the between clusters dispersion matrix.
Then we consider four criterion which are given as follows:

[C1] Beale's F statistic

Beale (1969) gives a criterion defined by the following

expression
R(k;) - R(k,)
F (kl ,kz ) =1 R(kz) 1 /A (54)
n- k
where A = —————l—-(—gﬁ 2 _ 1
n-—k2 kl

with m(k2—kl) and m(n—kZ) degrees of freedom.
In this expression, R(k) is the residual sum of squares when
the data set is divided into k clusters, namely R(k)=tr (W)

according to our notation.

- 49 -



[c2] Calinski and Harabasz's variance ratio criterion
Calinski and Harabasz (1971) suggest the use of the variance

ratio criterion (VRC) given by

_ tr(B) tr (W)
VRC = 77 / n-k
= tr(B) - (n-k ) /tr(W) - (k-1). (55)

In this formula, if a value of VRC monotonically increases with
k, then cluster in the sense of the previous definition does
not exist. If the VRC is decreasing monotonically with k, it
suggests the existence of a nearly hierarchical structure.
When the VRC is attaining a maximum at kX, it shows the presence
of k clusters. Most criteria of this kind are suggested by
many authors.
[C3] Marriott's determinant criterion
Marriott (1971) has examined the properties of the following
determinant criterion by experiments.
c=t*|w| / || (56)
where Kk is the number of clusters. When C is a minimum value,
its value shows a desirable number of clusters.
[c4] Maronna and Jacovkis' criterion
Maronna and Jacovkis (1974) have suggested a criterion ¥* which
depends upon the within cluster covariance matrix normalized
for unit determinant and investigated the property of w* by
a number of experiments.
v = p/m(n-k) . N (57)
m

where 1 = migl (ni— 1)‘ Wi
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ni is the cluster size of 7 th cluster and the other symbols
are the same as in the previous definitions. They have proved
that the value of y or y* is monotonically decreasing. It is
obvious that yp* is the geometrical mean of the cluster spread

as measured by determinants of each cluster.

[ A procedure of the sensitivity analysis ]

We can examine the behavior of clustering processes by observing
the effects of a little change in the data set to which noise is added.
A procedure of the sensitivity analysis proposed here is simply

summarized as follows:

[Step 1] In the first place, apply the two clustering methods,
single and complete linkage , to the initial data set X=(§1,

§2,"',_§n)' and compute the four criteria at each stage of

fusing.

[Step 2] Next disturb the original data set by adding a (multi-
variate normally distributed) noise to each data Ei'
Disturbed data may be written by

Xi =§7:+.e_7: (7:=ll2l3l...’n) (58)

where gﬁzis a random number generated from N(Q_,eI), the
constant € being given as a value keeping of suitable size
a suitable measure of rank correspondence between di' and
d;j, where dijls are the original m dimensional data, dzj's

added noises.

[Step 3] Carry out a clustering based on the y's and compute
the four criteria. Thus the original data become vague by

this procedure.

[Step 4] Repeat [Step 2] and [Step 3] until the specified
number of iterations is accomplished.

[Step 5] Finally, examine the behavior of each criterion.
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Thus we can decide roughly the number of clusters, say k, by
examination of the behavior of these criteria following the change of k.
Moreover, the reason for the use a measure of rank correspondence
(for example, rank correlation coefficient) is mainly due to the follow-
ing property.

Property 7.

In the configuration of data disturbed by adding noises, we can
determine almost uniquely the region which remains unchanged the con-
struction of hierarchical structure produced by the initial configura-
tion of data. That is, there exists almost surely the region which
keeps the order of the successive fusion level between objects or
clusters monotonically invariant. In such a case, it is said to be
global order equivalent. If a property of global order equivalence
collapses rapidly by adding noise, there do not exist the clusters
that are well separable and compact. On the other hand, in spite of
disturbance in data, when the dendrograms keep approximately global
order equivalent, we can interprete that there exist clusters whose

cohesion are stable and tight.

Here, to verify the above property, we shall illustrate a brief example
as follows.
Example 10.

We shall now consider three configurations in two dimensional
space as shown in Figure 7. Then the dendrogram obtained by applying
single linkage to these data is really identical each other in the sence
of rank order for fusing each object. Actually, it is seen that the

dendrogram shown in Figure 8 indicates clearly such situation.
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Figure 7. The sets of data which generate a dendrogram
with the global order equivalent property.

Figure 8. A dendrogram formed by applying single linkage
to the data in Figure 7.

In addition, let now E={A, B, C,D} denote a data set consisted
of four objects. Then the relationship between E and the dendrogram
formed from E is shown as Figure 9. More precisely speaking, this
figure illustrates that there exists surely a region which the object
D can move freely keeping the order of the successive fusion level
global equivalent.

In the above example shown in Figure 9, there are four objects
in two dimensional space, but it is obvious that this situation is
satisfied yet to the case of configuration consisted of many objects

and higher dimensions by using the same consideration as induction.

Thus we can obtain the following property.
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Figure 9. An example of the region which generates the property
of the global order equivalence.

Property 8.

Let us consider the 7 objects consisted of multidimensional
measurements, we can observe that there exists the region which generates
the property of the global order equivalence in space formed by

bisecting vertically between hypersphere and any two objects.

However, even though dendrograms are mutually global order
equivalent, each value of a criterion for the number of clusters vari-
ously changes. Changing the number of clusters, we relatively compare
the rank correspondence with the behavior of each criterion. Thus,
the stability or robustness of clustering process may be evaluated
more objectively. But the number of partitions of the given data is

enormous, and it is really impossible to check all of them.
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Since we have investigated approximately and locally a partition produc-
ed by applying a specified algorithm to the data, which is represented
as a dendrogram, we must surely need the sensitivity analysis which could
enable us to reach a reasonable interpretation as to whether there is
any structure in our data or not.

After all, the most advantage of consideration described previ-
ously is to explore more reasonable some partitions without searching

among all possible partitions under a restricted situation.

Example 11.

We have prepared two sets of artificial data to examine the
above procedure of sensitivity analysis. These data is the séme one
which used already in Example 3. Namely, the one is a data set in
which there exist clusters in the sense of the assumption as shown
previously, and the other is not a such one. The both data are shown
in Figure 4 . All the sets of data used in our experiments consist of
50 objects and are in two-dimensional space (i.e. n=50, m=2).

Firstly, the results of computation with the original data sets can be
represented by Figures10-(a), (b), examination of each criterion for
data (B) suggests the following features:

(1) When the single linkage method was used, each criterion attains
its optimal value for the 4 groups. When the complete linkage method
is used, the results in Figure 10-(b). Even if we consider 4 groups,
each criterion does not give a clear result.

(ii) In Figure 10-(b), the behavior of each criterion changing with k

does not give similar results. Especially, the VRC's and v*'s show
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(a) Criteria from single linkage [data (B)] (b) Criteria from complete linkage [data (B)]
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Figure 10. Behavior of each criterion with the change

of the number of clusters, say k.
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a mutually different tendency. But the F's and C's clearly attain
their optimal values for 4 groups.

On the other hand, the results of analysis of the data (A) are
shown in Figures 10-(c), (d). Then we can observe the following features:
(i) The number of clusters is clearly five.

(ii) The difference between the two methods is not found and the four
criteria are seen to be similar in behavior. In other words, the

clusters formed by the two methods show no large difference in the form.

In practice, the results attained for k=5 are shown in Figure 10-(e) (single
linkage), Figure 10-(f) (complete.linkage). In spite of the fact that the

two methods give the same decision and that the data consist of four
groups, the two figures are only a little different in shape for each
other. However, in the case of data (A), the two methods give almost

the same results and the results are as expected when the clusters are
clearly separated (Figure iO-(g))-

Now, let us apply the sensitivity analysis to the data (A) and
(B). Beale's F criterion ismainly employed to investigate its behavior.
The reason for taking up Beale's F especially here is that Beale's F
criterion represents the relative quantity of the change of k and in-
volves a noticeable effect of the dimension m. The experimental results
of the sensitivity analysis are shown in Figures 11 and 12. By compar-
ing the results obtained by the single linkage method with those by the
complete linkage method, the single linkage method is seen to give more
sensitive results than the complete linkage method. In other words,
the complete linkage method is more stable or robust for a little change

of structure in data than the single linkage method.
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Figure 11. The behavior of Beale's criterion
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Figure 12. The behavior of Beale's criterion.

(+) In these figures;'s are the average of rank-correlations
obtained from experiment of 100 times.
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In the case of the single linkage method, the larger the quantity of
noises that are added to the original data, the more difficult it becomes
to distinguish F's change with X. Figures 12-(a), (b) are typical
examples. On the other hand, even though the complete linkage method

is a little inferior to the single linkage method as to the ability of
detecting the number of clusters, the behavior of F's is quite stable

and presents a reasonable basis for detecting compactly spherical clus-
ters. Obseving the change of the criteria with k, we can find a clue

to the number of clusters and obtain heuristically a useful procedure
which is suitable for investigating the tendency implicitly included

in data which is usually unknown.

Finally it is proposed that an extremely useful procedure in
exploring data structure is to combine the graph theoretic method and
the sensitivity analysis method. The graph theoretic method rather
investigates the link-like relationship between objects than look for
clusters. The sensitivity analysis method using the typical criteria
(that indicates the existence of clusters, for example, of spherical
shape) investigates the stability of the structure in data. We call this
combination of the two techniques the hybrid procedure.  Furthermore
considering based on the above discussion, we have suggested a procedure
which compares and evaluate, firstly, between partitions or methods,
and next estimate the number of clusters by sensitivity analysis under
a brief restriction, namely such as shape of clusters, metric relations,

and so on.
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The sensitivity analysis described above is a powerful tool which gives
a clue of solution for case iii) in the problems stated at the beginning of
this section. However assumption imposed on the procedure is more strictly
and, therefore, is not practical. A disadvantage of traditional or statistical
technique is that the use of them is unlikely to succeed in analyzing the
given data, since the really data are vague and slightly unreasonable.

But we can now suggest a procedure of examining the number of clusters
from a view point of fuzzy theory. Generally we can obtain a solution by
applying a clustering method to a given data. Accordingly it is very
difficult to investigate a set of partitions based on the only dendrogram.

Of course this set of partitions is local optima, since verification of all
possible partitions cannot be carried out. Therefore generating many
dendrograms by adding noise to a given data, according to the consideration
in section 4.1, we can compare those dendrograms with the only dendrogram
derived from original data. Thus if we assume that objects have slightly

a metric property, we can investigate practically and effectively the property
of partitions with the procedure in section 4.1. In other words, comparison
between the disturbed dendrograms and original one suggests some procedure

of quantitative evaluation of clustering process. Especially, at least,

a dendrogram derived from original data is an approximate solution.

Therefore, without checking all possible partitions, it is reasonable to
enhance the latent tendency of data and to examine more precisely the behavior
of many dendrograms obtained by adding noise. Thus we can evaluate and
estimate the partitions or the comparisons between several classifications.

In order to interprete fits and errors between partitions it is easily

understood that the concepts of fuzzy theory are more natural and valid.
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5. Several illustrations and a short discussion

Several considerations for the AHC methods were described in the pre-
vious sections. 1In this section we shall attempt to illustrate some
examples of clustering procedure by applying our proposal to the sets of
data obtained practically.

Example 12.

The first analysis is of the set of data used by Peay (1975), which
is taken from Parkman and Sawyer (1967). The raw data consisted of the
numbers of marriages occuring between members of different ethnic groups
in Hawaii. The measure is normalized for overall marriage rates adjusted
to indicate a kind of disparity measure. But in our illustration this
measure is transformed into an agreement rate. Accordingly the larger
the value, the larger the intergroup marriage rate too. The name of
ethnic groups included (i.e. objects), and the identified numbers to

them are listed as follows:

Ol : Hawaiian O2 : Part - Hawaiian
O3 : Caucasian 04 : Puerto Rican
O5 : Fillipino O6 : Chinese

O7 : Japanese O8 : Korean

Thus the given raw data is shown in Table 5.

Firstly we shall examine the results obtained by applying single
linkage and complete linkage to the similarity matrix in Table 5.
Table 6 shows A= (Sij) produced by single linkage and Table 7 is
V= (§ij) by complete linkage. And the dendrograms as shown in Figures
13,14 are produced from these A and V . Furthermore the fuzzy degree

of fitness r”* indicate the following values.
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Table 5. The similarity matrix S for Peay's example.

1 2 3 4 5 6 7 8
1 1.00 0.94 0.79 0.70 0.82 0.73 0.67 0.68
2 1.00 0.88 0.79 0.86 0.84 0.77 0.77
3 1.00 0.80 0.78 0.76 0.76 0.80
4 1.00 0.81 0.63 0.59 0.63
5 1.00 0.70 0.70 0.72
6 1.00 0.76 0.79
7 1.00 0.80
8 1.00

Table 6. A= (Sij) obtained by single linkage.

1 2 3 4 5 6 7 8

1.00 0.94 0.88 0.81 0.86 0.84 0.80 0.80
1.00 0.88 0.81 0.86 0.84 0.80 0.80

1.00 0.81 0.86 0.84 0.80 0.80

1.00 0.81 0.81 0.80 0.80

1.00 0.84 0.80 0.80

1.00 0.80 0.80

1.00 0.80

1.00

IO UL W

Table 7. V= (dij) obtained by complete linkage.

1 2 3 4 5 6 7 8

1.00 0.94 0.70 0.70 0.82 0.59 0.59 0.59
1.00 0.70 0.70 0.82 0.59 0.59 0.59

1.00 0.80 0.70 0.59 0.59 0.59

1.00 0.70 0.59 0.59 0.59

1.00 0.59 0.59 0.59

1.00 0.76 0.76

1.00 0.80

1.00

OO0 ULk WwN -
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i) if complete linkage, r*=0.173

ii) if WPG method, r*=0.058

iii) if single linkage, r* =0.000

Therefore it is easily seen that there exist fairly fitted solution

between single linkage and WPG.
fitted solution in the case of single linkage.

dendrogram formed by single linkage

(i.e.

Especially we can observe the best

However observing the

Figure 13), we can detect

the existence of so-called chaining-effect.

o
~
(&)
yo

03
o —
05
Og’ I
07
Og
Dendrogram formed from Table 6. Dendrogram formed from Table 7.
Figure 13. Figure 14.
04
(6)
Oy 19 Os  (14) 02 O3 Os 07
¢ * (12) (20) - (20 N
(16)
®
Os¢
Fibure 15. MST generated from the matrix A of Table 6.
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And that also shows no large changes in hierarchical level. Accordingly,
in general, one has been considered that such situation is undesirable
in the meaning that the data contains no group structure.

On the other hand, as shown in Figure 14, compléete linkage produces
a dendrogram which large changes in level, especially going from three
groups to two groups. Thus one has determined just like one that
there exist explicitly clusters. However the judgement is poor, since
we can obtain another information by the investigation of MST formed
from A. Therefore, in the following, we shall try to make MST based on
A. The result is shown in Figure 15. This enables us to examine
visually and intuitively relationships between objects.

For example, there exists slightly the connectedness between O4
and O,. But O, and O, are very closely related. Furthermore we can

7 1 2

observe the similar situation between O2 and 05, or O2 and 03.
After all, in this example, the link-like information between the

objects plays an important role for the purpose of interpreting and

exploring the data.

Example 13.
We shall illustrate an example that has examined the feature

of nucleotide conformations observed in yeast phenylalanine tRNA (i.e.

Phe . i
tRNA ) [Kitamura et al. (1977)]. Generally it has been well known
that the molecular structure of tRNAPhe give a clue to investigation
about nucleotide conformations. Therefore it is necessary to think
some reasonable procedure for finding the common and specific conforma-

tions which may regulate the molecular geormetry and the conformation

in tRNA. Hence it is highly natural to apply cluster analysis to
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the solution of this problem.

We now attempt to classify the conformations consisted of 74
nucleotide units (i.e. objects), and measurements are seven torsion
angles observed to each unit. Since the torsion angles are a kind of
directional data, we shall denote by dij(w) the length of the chord
between 7 and j on a unit circle for torsion angle w as shown in Figure

16. Namely,
d2

.. (w)
A

. . 2
(sinw.-sinw.) + (cosw.-cosw.)
T d T J

{l-cos (w.-w.)}.
£ 4

dij(w{J/

Figure 16.

Therefore let us make the sum of dij(wt) about the seven torsion angles

wt(t==l,2,---, 7). Then we can obtain a kind of distance

z 2 t1/2
d..= {z as . (w))Y’" " (<,5=1,2,--,74). Thus the clustering may be
j 42 ¢

carried out by using the distance matrix calculated by the above
expression from data set. Here, the distance matrix is normalized and
transformed into a similarity matrix by the same procedure as Example 6.
Next applying single linkage and complete linkage to the similarity
matrix, we can obtain the following result. That is,

i) if complete linkage, r*= 0.283

ii) if single linkage, r*=0.266.
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Thus, in this case, it is seemed that the result of single linkage is
slightly better than that of complete linkage, but almost same.

But in this case the number of reachability to the transitive closure
indicates nine. This value is relatively very small in comparison to
the order of initial similarity matrix, say n=74. Thus it is suggested
that the given data is very close to the hierarchical structure.
Accordingly, it is useful and suitable for the following analysis that
MST is chosen rather than the dendrogram. Hence we shall make MST
from the result of single linkage or transitive closure. This result
are illustrated in Figure 17. Investigating this figure, we can find
the significant features that the properties of MST are more reasonable
and very well agreed with the suggestions of many experts from an

empirical oOr specialistic point of view.

19
15 18
16 ‘I?
)
46 ! o
|
524 T22
53 gg 654 21 26
¥5q932 -
45 31 54 59 55 38 42 64284135 11291255040 10 6349 151 21 7 8
111 23 2 fm
34 2 30 12
58 48
520 14
|
|
|
|
s
47
Figure 17. MST produced from nucleotide

conformations of tRNAPhe,
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However, at present, we cannot examine the number of clusters based
only the above result. Therefore we shall try to estimate the number
of clusters by using four criteria described already in the previous
section 4,2, The computational results are shown in Table 8.
Of course, these results are not conclusive but there is some useful
information. For example, it is easily seen that these criteria
computed by changing Kk variously show almost the same behavior except
w*, and that they attains also its reasonable value for the seven groups.
Forming seven clusters on MST in Figure 17 and classifying by the use of
various symbols, we can observe the fact that the configuration of MST

indicates that there exist two groups in the data. That is,

Group A : one main cluster consisted of 65 objects (indicated by symbol

" in Figure 17).

Group B : several small clusters, of which one consists of 4 objects
and another consist of singleton mutually. (indicated by

symbol "o" or connected by the dotted line in Figure 17).

Table 8.
# of clusters 5 3 4 5 6 7 8
criteria
Calinski's VRC 4.946 5.667 4.177 3.795 4.179 6.216 5.715
Beale's F 0.575 1.141  0.294 0.734 1.725 5.085 0.915
Marriott's C 2.095 1.625 1.666 1.140 0.239 0.027 0.024
Maronna's y* 0.060 0.053 0.053 0.050 0.044 0.033 0.034

If the number of clusters are increasing, then Group A is hierarchically
subdivided into several clusters. Hence it is predicted that the

general tendency of organization is constitueted by Group A.
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In conclusion, we shall attempt to summarize some of the suggestions
already described in the previous sections. Above all our main purpose
has been to examine several properties which characterize the cluster
analysis, especially the hierarchical clustering.

Firstly, arrangement of AHC methods suggests the fact that many methods
have a similar feature in common. We have discussed consistently the gener-
alized extension of these properties by the aid of the fuzzy set theory.
Thus, it has been shown that our approach includes a natural generalization
and extension for many AHC methods, especially which are similar to single
linkage and complete linkage.

Next, we proposed that a degree of fitness between solutions of AHC
methods and the similarity or distance of original data is investigated by
a fuzzy symmetric difference. And an indicator, say fuzziness r*, derived
from a fuzzy symmetric relation makes possible comparisons among the methods.

Finally we discussed the problems of comparing between dendrograms and
investigating the partitions formed on dendrograms, and proposed a practical
procedure, which observes the correspondance between the dendrograms (i.e.
equivalence relations) and which examines the goodness of fit between par-
titions generated from dendrograms. And to compare our consideration with
some traditionally statistical procedures of evaluating the clustering process,
we proposed an experimental procedure, say sensitivity analysis. Thus we
can obtain also a procedure of estimating the number of clusters and of de-
tecting the clusters. Examination of several experiments and practical
applications showed that our proposal is available and useful. Thus we
have overcome systematically many difficult problems included in most of

AHC methods which have been said to be empirical and subjective up to now.
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