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1. Introduction

The objective of this paper is to examine the relationship between the properties of
parameters which express agglomerative hierarchical clustering algorithms (AHC
algorithms) and "space distortion" resulting from updated distances, and to generalize
the Lance and Williams(1967) formula (combinatorial method). The AHC algorithms
are based on the following formula proposed by Lance and Williams :

d(C;U G}, G = 05 d(C;, G + 0 &(C}, C) + Bd(C;, C)
+v1d(C;, Cy) — d(Cj, Cl . )

Using this formula, the dissimilarities, or distances, between a newly-merged cluster
C;C;j and the remaining other clusters Cy are updated and a set of parameters, 6={oy,

., B, Y}, are used to characterize the clustering methods and these parameters
determine the linkage process.

With this formula, Lance and Williams introduced the concepts of "space distortion"
(which may be space-conserving, space-contracting, or space-dilating) and the
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"monotonicity” of updated distances. One of the conditions for monotonicity are given
by

ai+aj+[321. 2)

However, the AHC algorithms may produce reversal of the resulting tree structure.
Thus, Milligan (1979) and Batagelj (1981) have presented following necessary and
sufficient conditions for suppressing such reversals.

Yy 2 —min{c;, aj},
o+ 0 > 0. A3)

At the same time, the concept of space distortion, as discussed by Lance and Williams,
is intuitive. In addition, DuBien and Warde (1979) have derived, under some
assumptions, a more sophisticated, theoretical concept of space distortion among
distances obtained at different cluster merging levels. Unfortunately, these studies have
concentrated on characterization of only a sub-family of the AHC algorithms, namely,

the sub-family characterized by the (B,y) space defined in formula (1).

2. Conditions for Space Distortion

Thus, this paper proposes several extensions to the concept of space distortion which
will increase the sophistication of the AHC algorithms. Let us first assume the
following condition concerning the distances among three clusters (C;, Cj, and Cy):

d(G;, Cj) < d(G;, Cy) < d(Cj, Cyp)- 4)

In addition, let

A™={ d(C;U Cj, Cp at 81d(C;, C)) <d(C;, C) < d(Cj, C)} (5)

be a set of all distances obtained from the result of an agglomeration at the m-th step in
a clustering process. In this case, the conditions causing space distortion are defined as
follows:

1) Space conservation:
d(C;, G < d(GuUCj,Cy < d(Cj, G5 d(CGu G,Co eA m
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2) Space dilation:

d(Cj, Cp < d( CiUCj,Ck) ; d( CiUCj ,Cp e A™
3) Space contraction:

d(C;, G 2 d(CuU G, C; d(GUG,Cy) € Am,

The paper examines the properties of space distortion occurring in varipus clustering
methods and the results are summarized (see Table 2). Most clustering methods are

based on general agglomerative algorithms using the (o, o, B, v) parameter space

(i.e., formula (1)). However, examination of these strategies under the assumptions
above clarifies the relationship between space distortion and the parameter space
occupied by the particular strategy. Figure 1 shows the region occupied by various

methods in the parameter space (o, o, B), as defined below.

1) Region in which space conservation occurs:
{(ai,aj,[})lai+aj+[3= 1, 0<<xi,ozj< 1, p=0}

2) Region in which space conservation or space dilation occurs:
{(ai,aj,B)Iai+ocj+B>1, 0<ai,aj< 1, -1<B<1}
u{(ai,aj,B)lai+aj+[3=l, 0<ai,aj< 1, -1<B<0}.

3) Region in which space conservation or space contraction occurs:
{(ai,aj,B)Iai+aj+B<l, 0<ai,aj<1, -1<B<1}

u{(ai,aj,[i)lai+aj+[3=l, 0<ai,aj<1, 0<B<1}.

3. Simplification of the Lance and Williams formula
This paper proves that the single linkage and complete linkage methods are
characterized as special cases of the flexible method by simplifying the Lance and

Williams formula (1). First, the following two parameters are defined for updating the
distances to usage two clusters:

8 =d(C;,Cy) —d(C;,C) > 0, &=d(C;,.Cy) - d(C;,Cp > 0. ©)
The proof involves substituting the values 8/(8+2€) for parameter [ to derive the single
linkage method from the flexible method in formula (1).

d(C; U Gy, G ={ d(C;, G +d(Cj, G } (1- B2 + B d(C;, Cp
={d(G;, C) +d(Cj, C) } €/ (8 +2¢) + 8d(C;, Cp) /(5+2¢).
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By substituting d(Cj,Ck)= d + d(C;,Cx), and d(Ci,Cj)= — & + d(C;,Cy) for the above
expression, we can obtain the following relation.

d(C;U Gy, C) =€ { 2d(C;, G + 8} /(8+2€) +8 { d(C;,.Cy) — € } /(5+2¢)
= { 2ed(C;, Cy) + €d + 8d(C;,Cy) — €d } /(&+2¢)
=d(G;, Cyp).

Similarly, substituting the value —8/(8+2¢) for parameter 3, we can obtain the complete

linkage method. Thus, specifying parameter 7y can be eliminated, and the formula (1)
is simplified as following expression:

d( G U Gj, CY = & d(C;, C) + 05 d(Cj, C) + B d(C;, C).

Moreover, the condition of monotonicity which contains parameter v is unnecessary to
be considered. Thus, simplification of the Lance and Williams formula is completed.
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TABLE 1. Hierarchical Clustering Algorithms

Methods o4 aj B Y oj+oy+f
Single linkage 1/2 1/2 0 -1/2 1
Complete linkage 1/2 1/2 0 1/2 i
Group average nj/(nj+nj)  nj/(nj+nj) 0 0 1
Weighted average 1/2 1/2 0 0 1
Ward's method (ni+n)/ng  (nj+ng)/ng -ng/ng 0 1
Centroid method nj/(ni+n;)  nj/(nj+n;j) -0* 0L 0 148
Median method 1/2 1/2 -1/4 0 3/4
Flexible method (1-py/2 (1-B)/2 B<1 0 1
Note: ny=nj+nj+nk and njis Cluster size of C;.
TABLE 2. Space Distortion Conditions
Methods Contracting Conserving Dilating
Single linkage Yes No No
Complete linkage No No Yes
Group average No Yes No
Weighted average No Yes No
Ward's method No Yes Yes
[for €/3 <nj/ng] [for €/82n;j/ ng]
Centroid method Yes Yes No
[for 6(n1+nj)/ni <djjl [for 8(ni+nj)/ni > djjl
Median method Yes Yes No
[for 26 < djj] [for 28> djj)
Yes Yes Yes
Flexible method [for &/ (8+2¢g) <P] [for =8/ (3+2¢) [for =8/ (8+2¢) 2 ]
<B<d/(3+28)]
Flexible method Yes Yes Yes
(Lance-Williams) [for B > 0] [for B =0] [for B < 0]

Note: n; is cluster size of Cj, djj=d(C;,C;), d(C;,Cj) <d(Cy,Cy) < d(C;,Cx)»
§=d(Cj,Cy) - d(Ci,Cx), €= d(C;,Cy) — d(C;,Cy.
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