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In the recent work, attention in cluster analysis is directed
towards the development of various criteria that may be used
for evaluating the clustering process, rather than clustering
procedures. In practice, it is an important problem to choose
the number of clusters or evaluate the clustering process by
changing variously the number of clusters. In this paper, we
shall propose use of the affinity to solve such a problem.

INTRODUCTION

In cluster analysis, it comes into question to settle on the number of clusters.

In fact, various attempts have been made to handle this problem, but the most im-
portant point in such a case is how to define the term "cluster". Most proposed
definitions consist of statements such that a cluster is a set of observations
which are similar to each other, But these definitions are very vague. In any
case, we must examine partitioning the given data set into various sets of clusters.
However, it is impossible to assess all possible ways of partitioning.

The clustering procedures which we treat in this paper are iterative partitioning
techniques and based upon the following well-known relationship :

T=W+B (1)
where T is the total dispersion matrix, W the within-cluster dispersion matrix,
that is,W =i§1 Wi where Hi is the dispersion matrix for the i-th cluster Ci’ and

B the between-clusters dispersion matrix when the cbservations are partitioned

into a set of k clusters. These techniques, as many others, attempt to minimize
tr(W)}, where W is given in expression (1). In view of this, we assume that the
clusters we seek are spherical and relatively compact in shape. Accordingly, the
problem is how to choose a reasonable number of clusters of such shape, and to
approach the above objective as far as possible by iterative procedure. In general,
the solution obtained by these procedures is local optima. Moreover, there has
been no way of knowing whether or not the best optimal solution has been reached.
To tackle this problem we shall propose the affinity as a criterion to examine a
set of clusters formed by the iterative partitioning procedure.

EVALUATION BASED ON THE ADJUSTED AFFINITY OF CLUSTERS
In the previous papers [1], [2], we have discussed application of the affinity to
the clustering process. In particular, we are trying to make improvements of algo-

rithm and make a program-package for computers. Several new ideas are included in
the present paper, for example, that of the function which controls the cluster
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size and the within-variance in each cluster, the treatment for the occurrence of
singularity, and so on. For making clear the idea of the functions, we shall
illustrate the experimental results of typical partitioning procedures, the k-means
method and the ISODATA method. The optimization in the k-means method and the
ISODATA method is performed by minimizing tr(W). That is, this procedure is iden-
tical with minimization of the sum of squared euclidian distances between indi-
viduals in a cluster. However, both methods are essentially different in the
following points.

First, in the k-means method the number of clusters is initially fixed and the
minimization of tr(W) is achieved by replacement and exchange of individuals. On
the other hand, the procedure of the ISODATA method not only minimizes tr(W), but
also utilizes the following characteristics concerning the algorithm :

1) +to delete temporarily cutliers or clusters consisting of small numbers of
individuals,

2) to carry out repeatedly the lumping (or merging) process and the splitting
process of clusters, and to perform the minimization of tr(W) by changing the
number of clusters,

3) to choose between splitting and lumping locally by evaluating the variation
of each cluster.

After all, the ISODATA method differs basically from the k-means method in the
point of the automatical division or combination. Besides, we have improved each
point described above in our computer programs. More detailed descriptions are
presented in the references [3], [4], and so on.

For a set of clusters {C;, Cz, ... , Cx} we represent the degree of separation of
the set of clusters by the affinity
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the variance-covariance matrix of Ci' Further, to make more comprehensive the be-

being the mean vector of the observations in cluster Ci’ and Ui the inverse of

havior of affinity e over changing k, we take pﬁ = (1/x)%0g P, &s average compact-
nesg or spread per cluster. We call pﬁ the adjusted affinity.

By the way, if we want to take into account the criterion of expression (2}, it
will be more reasonable to utilize the generalized distance rather than the squared
euclidian distance, that is D —(x —x ), (x -X, ), where EJ is the observed vector

Y =J -
of the j-th individual in the 1-th cluster and x is the mean vector of the i-th
cluster.

However, when utilizing the generalized distance, the result of clustering is
strongly influenced by the shape of data, (i.e., by the size and the direction of
variation of each group generated by clustering, such as the phenomenon cbserved
frequently in discriminant analysis). Thus, in the case where there are several
elongated clusters and the variance-covariance matrix in each cluster is relative-
ly large, it will be recommended to use the ecriterion of the sum of squares and to
adopt a little more large number of groups than that of those which will seem to
exist really.

To illustrate our procedure, we construct four sets of data in the following way.
First, let Gl, Ga, . G5 be three-dimensional Gaussian distributions with mean
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vectors

w = (-3.0, -2.0, 2.0) U2
us = ( 0.0, 2.0, 2.0) Uy
us = ( 0.0, 0.0, 0.0)

and variance-covariance matrices

1.00 -0.k2 -0.10

{ 0.0, -2.0, -2.0)
(0.5, 2.0, -2.0)

v, = 0.3 o0.h2| ,

1.00

[1.00 0.ls 0.60]
V, =V, =V, =V_-= 0.36 0.15| ,
2 3 45 1.00

respectively. We took
100 observations (random sample of size 100) from G and Gy, respectively,
200 observations from Gz,
300 observations from Gz and Gs,
respectively, and made the mixture of these 1000 observations. Denote it by A.
Similarly, we formed two more sets of the same structure, B, C. Further, we formed
a set of 2500 observations in a similar manner. Denote it by D. To these sets A,
B, C, D we applied the two methods mentioned above.

First, we examine the results by the k-means method. A part of the experimental
results is shown in Table 1. It is seen that the indicator p; attains wvalues near

its minimum when the number of clusters is 5 to 8 in the range 2 to 10. This is
commonly cbserved at each set. For example, let us loock at the case A shown in
Table 1, and compare the given data set A with the clusters actually obtained.

The set of data in Figure 1 actually consists of several relatively well separated
spherical groups, but it seems difficult to recover the groups as given initially.
In fact, Dﬁ takes a lower value when the data is partitioned into seven or eight

clusters, and we cannot exactly detect the five groups.

However, it can be seen that the number of clusters chosen by the value judgement

of pﬁ is reasonable. In fact, we can verify the validity of the judgement by the

visual observation of the scatter diagrams for the sets of data classified into
five or eight clusters as shown in Figures 2 and 3. The behavior of pﬁ represents

clearly the well-known feature that the clustering criterion such as minimization
of tr(W) pertains to constructing a spherical and well-condensed group structure
on the data. Besides, the result of eight clusters, (see Figure 3), is prefer-
able to that of five clusters. Because we can cobserve gaps or moats for clusters
€; and C3 in Figure 2, which are known as "wild-shot".

On the other hand, it seems that the clusters of the eight groups are like balls
in shape, respectively, but we can adequately grasp the traits of data by linking
together clusters. As is seen in this example, it will be reasonable to form a
little more groups.

Secondly, we applied the ISODATA method to the sets of data A, B, C and D. In the
ISODATA method, the number of clusters can be altered variously in some range with-
out the number of groups previously specified as in the k-means method. In this
case, when the number of iteration of the clustering process was ten for each set
of data, we obtained five clusters as an optimum set of clusters. Nevertheless,

we can see almost the same result as that of the k-means method. The values of p;
are as follows :

o = -0.69085 (for the case A) (n=1000)
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QE = -1.18481 (for the case B) (n=1000)
p: = -1.06616 (for the case C) (n=1000)
pf = -0.T62uT (for the case D) (n=2500)

In the case A, it can be observed that the result of the ISODATA procedure agrees
with that of the k-means method, but, of course, it happened by accident. Es-
pecially, in the case D, forming the cross-classified membership table between the
actual five groups and the five clusters cobtained by the ISODATA procedure, we can
obtain Table 2. This table illustrates clearly that p{ is effective as a cri-

terion for evaluating the clustering process or choosing the number of clusters.

CONCLUSION

In general, it is obvious that clustering procedures depend strongly upon the algo-
rithm and the criterion that generates the set of clusters. However, as is de-
scribed above, investigation of the behavior of p* indicates with objectivity that
each cluster formed is likely to be nearly spherical in shape. A clustering pro-
cedure may be evaluated by tracing the value of pi. Though it is impossible to

check all possible partitions, we can search approximately for a reasonable parti-
tion into clusters by using a feasible method and make comparisons between several
results of clustering.

Finally, we add that a clustering program-package for computers, called MINTS (

MINTS is an abbreviation of "MINi Numerical Taxonomy System"), has been prepared
to carry out the two procedures proposed here.

Table 1.

Values of adjusted affinity p* obtained by the k-means method
¥ Pk

Number Adjusted affinity p;
Iteration of

clusters Case A Case B Case C Case D
2 2 -0.271 -0.225 -0.239 -0.248
3 3 -0.639 -0.911 -0.413 -0.7T45
L I -0.5k49 -0.848 -0.823 -0.628
5 5 -0.690 -1.176 -1.066 -0, 7Lk
6 6 -1.125 -1.221 -1.085 -0.836
T T -1.1k9 -1.260 -1.32k -1.138
8 8 -1.240 -1.082 -1.165 -1.049
9 9 -0.937 -0.997 -1.060 -0.970
10 10 -0.864 -0.926 -0.995 -0.863
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Table 2.

Cross-classified table obtained by the ISODATA method

Clusters G Ac‘éua.l groupsé G Clsuiszteer Obtained mean wvector
5 1 2 3 L
c, 612 ke 59 2 15 ( o0.01 0.02 0.08 )
c, 5 2Lt 3 255 ( -2.98 -1.96 1.95 )
03 59 3 Ls8 520 ( -0.35 -1.96 -2.10 )
Cy Lg 672 8 29 ( o0.28 1.99 2.12 )
Cs 25 16 2ko 281 ( -0.56 1.84  -1.93 )
Size
of 750 250 500 T50 250 2500
group
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Figure 1. Five groups generated from the mixture of

three-dimensional Gaussian distributions
{in the case of data set A).
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In this figure, we can slightly observe the presence of moats.
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Figure 2. The set of data partitioned into five
elusters by k-means method in the case
of A shown in Table 1 (pf = -0.691).
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Figure 3. The set of data partitioned into eight
clusters by k-means method in the case
of A shown in Table 1 (p;; = -1.2k0).
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