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This paper will be mainly concerned with the evaluation of tech-
niques of cluster analysis, in particular agglomerative hierarchical
clustering (AHC) methods. In the AHC methods, relationships among the
objects being grouped are represented by a dissimilarity or similarity
matrix. Therefore it is quite natural and meaningful to describe the
matrix by taking it as a representation of a relation or a graph. In
such cases, especially, the concept of fuzzy relations proposed by Zadeh
is more relevant and useful for a reasonable examination of the cluster-
ing models.

We shall first attempt to examine several properties of the AHC
methods based on the fuzzy theory, especially single linkage and com-
plete linkage. Furthermore, we shall propose a fuzzy degree of fit-
ness which is a new index for evaluating and comparing the relation-
ship between two relations. This index may be generated by using the
fuzzy symmetric difference between two relations. Finally, we shall
consider the comparison between the sets of partitions formed by
clustering process.

1. INTRODUCTION

In this paper, we shall discuss mainly the properties of the agglomerative
hierarchical clustering (AHC) methods. Most AHC methods start the clustering
process by forming a matrix which represents the pairwise similarities or dissim-
ilarities of all objects being classified. In general, the solution of an AHC
method can be represented by a hjerarchical structure, that is, a hierarchical
tree or a dendrogram. But it is rare that the hierarchical structure or dendro-
gram is constructed explicitly by fusing of the objects. Therefore, the AHC
methods can be interpreted as the result of successive approximations in the for-
mation of a hierarchical structure from the original similarity or dissimilarity
matrix which represents the kind of relationship between the objects. There are
a large number of well-known AHC methods, for example, single linkage, complete
linkage, the centroid method, the group average method, Ward's method, and so on.

Though the investigations for evaluation or comparison of the properties of
these methods are only little discussed systematically in works, it is quite im-
portant and necessary to discuss them in order to enable us to construct medels
with a satisfactory validity from the clustering process.

However, since techniques such as cluster analysis are more interdisciplinary,
many concepts are similar. In addition, when we examine the techniques proposed
by many researchers in the distinct fields, for instance, biology and psychology,
we can observe that most of those are the same or almost the same methods. For
example, the researchers refering to Johnson's paper in psychology use the terms
"maximum method" and "minimum method", but these two methods are known as "com-
plete linkage" and "single linkage" in the biological field. The terms "complete
linkage", "furthest neighbor", "rank order typal analysis", "diameter analysis"
are synonyms. The terms "single linkage", "nearest neighbor", "minimum method",
"elementary linkage analysis", "connected method" and a kind of minimum spanning
tree are synonyms.

Thus turning our attention to the fact that different terms have been used
to describe the same thing, we attempt to introduce the fuzzy set theory and the
fuzzy relation into the systematic consideration of cluster analysis, especially
AHC methods.
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510 N. OHSUMI

2: RELATIONSHIP BETWEEN THE AHC METHODS AND FUZZY RELATIONS

Since the investigations for evaluation or comparison of AHC methods have
been only Tittle discussed in formal works up to the present, it is really impor-
tant and necessary to discuss them in order to study cluster analysis. There-
fore, we shall turn our attention to these problems. Solving these problems
appears to require some adaptive tools. In such cases, fortunately, it seemed to
us that the concept of fuzzy relations proposed by Zadeh is more useful for ex-
amining the clustering models. We shall now attempt to examine the several cha-
racteristics of the AHC methods and the relationship between them and fuzzy
relations. For simplicity in our discussion, we shall define several notations
and terms.

We define the set of »n objects

E={ 01’02’03""’0i""’0n}
or for abbreviation,
E = 4 15253555 stsme 37 )
and denote the raw data consisting of a n x m matrix.
X = (Xiz) (2=1,2535..09m 5 1=1,2,3,...,m)
where 5i=(xi1’xi2""’xim)l is the observed vector for the Zth objects. Then,
the AHC methods begin with the computation of a similarity matrix S=(si.) or a
dissimilarity matrix D=(dij) between the objects formed from X. Most AHC methods

are commonly suitable for using various kinds of dissimilarity or similarity,
whether d;; and s;; are metric or non-metric. In the AHC methods, the goal of a
clustering process can be represented as a dendrogram. In other words, the input
is a matrix D or S, the end of a clustering process is a dendrogram which is a
graphical representation of hierarchical structure. The hierarchical structure
or dendrogram may be represented by a tree diagram as shown in Figure 1, which is
a two dimensional diagram configurating the fusions between objects which have
been constructed at each successive level, namely, the hierarchical level or
index hOl (x=0,1,2,...,m-1). As shown in Figure 1, the order of fusion level is

monotonically changing (increasing or decreasing), that is, the hierarchical
structure possesses the property of monotone transformation.

hierarchical level

ho hl h2 h3 ....... ...hct hn-2 hn-l
1 1 : .
. [} .
c,{ = -
1, ' !
3 T ' [
Co{ : F_____%_.__
Objects ; '
C3{ 6 )
(0l 7

cal N

This example consists of the nine objects. And there exists the set of
cluster C® = {C,,C,,C'3} at the hierarchical level ha(=hs)-

Figure 1. A dendrogram with monotonic invariant property.
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In the following discussion, we treat only the AHC methods in which the result of
clustering may be represented by the monotonic hierarchical structure H.

Thus a dendrogram is considered to be a hierarchical structure H specified
by the hierarchical index h(+). And we shall denote such a dendrogram by <H,h>.
For example, Figure 1 shows a dendrogram with nine objects. And there exists the
following hierarchical structure H.

H = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}
{1,2} {5,6} {5,6,7} {3,4} {8,9}
{5,6,7,8,9}, {1,2,3,4}, {1,2,3,4,5,6,7,8,9}}

A method which transforms a D or S into a hierarchical structure H may be regarded
as a procedure which imposes the ultrametric property of dissimilarity or simi-
larity, whether the original is metric or non-metric. In particular, the AHC
methods are procedures which form the <H,h> with a monotonic hierarchical st-
ructure. We can then obtain a hierarchical partition

¢ = {€1:Case0usCy 3 (a20,1,25.0.0,m-1)
at the level ha, which is derived from %! at the level ha_l.
is a property of the dissimilarity or similarity which satisfies the following
expression as the condition of transitivity:

The ultrametric

5,5  max{8y s 6kj} for any 7,4,k € E (1)
or
1 T | 1 » (] 1
s i 2 min{$ i © kj} for any 7,4,k ¢ E (1).
To distinguish between (1) and (1)', the inequality (1)' is sometimes said to be
an inframetric. These inequalities may be always derived from the dendrogram.
Hence, continuing our discussion, we consider the two well-known methods of

single linkage and complete linkage and, of course, the both methods possess the
above described property. Both procedures define the distance between two clus-

ters C_, C eCa_l, which are fused at the level ha, as follows:
Single linkage method
i |
m1n{dij10iecp,0jec } (2)

A ?i%[gig{drs|0rscl’ OSeCm}] (1<2,msn-a,l¥m,ptq)

Complete linkage method
maX{dij|0i€CP’0j€C } (3)

smin [mBX{dpslorECZ’OseCm}] (1<2,msn-a,1%m,ptq)
l,m 7r,s

where the symbol "A" indicates the definition.

The most essential difference between these two methods is that complete
linkage requires maximum operation and single linkage requires a minimum opera-
tion. In other words, complete linkage is exactly the opposite of single linkage.
Turning our attention to the feature that both methods are characterized only by
a maximum or minimum operation, we try to introduce the concepts of fuzzy set
theory, in particular fuzzy relation or fuzzy graph into the generalized exten-
sion of AHC methods. It is our next aim to examine the relationship between fuzzy
relations and AHC methods.

We shall now define the subset A of E to which u(Z|A) or u; represents the
degree of belongingness. Under the considerations of ordinary set theory, we can
consider that if any ieA then y;=1, and if any i¢A then p;=0, and say, u; is a
characteristic function. But if the value of y; takes in the interval [0,1], u;
is called a membership function. A subset A of this kind is said to be a fuzzy
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subset. We assume two fuzzy subsets A,B and define them as follows:
ACB iff w(Z|A)<u(Z|B) for any icE
AAB = {(¢, min{u(Z|A),u(<|B)})|ieE} (4)
AVB = {(Z, max{u(Z|A),u(<|B)})|ZeE}

Therefore, the operators V and A stand for union and intersection in the sense of
fuzzy set theory, that is, vV and A indicate the maximum and minimum, respectively.
And we can define also a fuzzy relation in E; x E, as follows:

R = [{(£.5)>u(2,4|R)}ieEq,4eE,] (5)
In particular, if E,=E,=E, we have the following fuzzy (binary) relation.
R = [{(2,5)sul(2,d|R)}|7i,deE] (6)

where u(z,j|R) is a membership function which represents the degree of belonging-
ness of pair (7,j) to the subset E2 = E x E. We suppose that the value of
u(Z,7|R), in abbreviation u(Z,j) or uij» takes only in the interval [2,1]. Then
there are many fuzzy relations with various conditions. We shall define the
condition of some fuzzy relations as follows:

(a) wip =1 for any 7¢E (reflexivity)

(a)' wyp =0 for any i¢E (anti-reflexivity)

(b) Mij = Mg for any 7,jeE (symmetry) -
(¢) wig 2 mix [min {1z ukj)]

for any 7,j,keE (max-min transitivity)
(d) Mg < m;i<n [max {u;z. ”kj}]
for any 7,j,keE  (min-max transitivity)

Table 1. Summary of some fuzzy relations

condition
(a) (a)' (b) (c) (d)
relation
similitude X X X
dissimilitude X X X
resemblance X
dissemblance X X

As shown in Table 1, we can consider the several fuzzy relations by the
suitable combination of each condition. For example, the relation that satisfies
the conditions (a), (b), (c) is a similitude relation. Thus, by the aid of the
notations described above, we can easily find that the non-metric dissimilarity
is identical to the fuzzy dissemblance relation and that the non-metric similar-
ity is identical to the fuzzy resemblance relation.

Additionally, we can see that an ultrametric inequality for the distance is
identical to a min-max transitivity, that is, an ultrametric is a fuzzy dissimili-
tude relation. Similarly, an inframetric is a fuzzy similitude relation. Occa-
sionally, the former is called the dissimilarity relation, the latter is called
the similarity relation, and either construct the equivalence relation.

In other words, the similarity or dissimilarity matrix derived from a dendro-
gram with a monotonic hierarchical structure is an equivalence relation. In
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particular we can observe that the result of single linkage is identical to a
relation represented on a fuzzy (min-max or max-min) closure obtained by repeating
the fuzzy (min-max or max-min) composition defined by the right-hand side of the
expression (7)-(c) or (7)-(d). Moreover it is obvious that the expression (1) or
(1)' is implied by the condition (7)-(d) or (7)-(c) and it in turn implies the
expression.

3. A MEASURE OF DIFFERENCE BETWEEN TWO SIMILARITY MATRICES

As mentioned above, the AHC methods that have been proposed up to the present
are considered to be exact methods for forming the fuzzy equivalence relation it-
self by a kind of successive approximation. We are interested, in the following,
in evaluating the difference between two dissimilarity or similarity matrices.
We need an index which examines the difference between the original similarity
matrix and the matrix derived from a dendrogram. Since the dissimilarity or
similarity formed by single and complete linkage is regarded as a fuzzy dissimili-
tude or similitude relation, as the extention of ordinary symmetric difference,
it is natural and valid that we consider the fuzzy symmetric difference as a
measure of evaluating and comparing the result of clustering process. And this
measure is defined as follows.

Let S = (s;;j) and S* = (szj) denote the original and derived similarity
matrix, respectively, where s;; is normalized in the interval [0,1]. Then, the
fuzzy symmetric difference is defined as follows:

p(S,S*)=(SAS*) V (SAS*) (8)

where S and S* represent the complement of S and S*, respectively. Though we
will mainly describe here the case of similarity, our consideration can be easily
extended to a case with dissimilarity measures. And if we let pzj denote an
element of matrix p(S,S*), we then have the following relationship,

= & 3 .

pij = (S,L'J'/\ Sij)V(sijA 51,(7)
= 1 * —g*
= 5{1 Isij+s7/‘7 ]|+|Sij Sij|}

accordingly,
*
a1k
*
Tarnl

*
iJ
. 1 *
RSy .. = 1-5{s..+s. .-
) it Si s} 51 5 tEen 07 1 g{sw+s7’(7 |'s
where s.. = 1-s.., s.. = 1-s...
g 1g° "1 1J

Thus, we can obtain

. * il
.. .. oo 'F {5 ot *
b le+le5], then 0 2{le s |'s

* . *

Siz.238 % . L.tsh .

. Taxf g 1J2 Tf S5 skJsl (9)
-min (Sij’sij) if sij+sij>1,

where the range of pij is in the interval [0,1].

For convenience and simplicity in our considerations, we investigate a de-
gree of goodness of fit between two relations by a measure of p(S,S ), say

r= ||p(S,s*)||= iE‘pij' In the sense of fuzzy set theory, a difference between

S in itself is not always zero, namely, let it be denoted by pgo(S,S), ro=|| po (S,
S) || = || SAS|| is not always zero. Moreover, the maximum difference is given
by r'=|| SVS|| . Thus, we can obtain the expression ro<r<r'. Using these results,

we shall propose an index as follows.
We shall denote by r* the index which indicates a fuzzy degree of fitness
between two relations.
r*=(r-nrg) / (r' - rp) (10)

Obviously, this expression satisfies the inequality 0 < r* < 1. Therefore, we
can examine the degree of the goodness of fit by the value of r or r*. Our
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considerations based on the fuzzy symmetric difference are regarded as the gener-
alized extension of absolute deviation or stress measure in the sense of statis-
tics.

EXAMPLE 1.

We shall consider the clustering of the sets of data shown as the scatter
diagrams in Figures 2-(a), (b) and (c). Data (a) seems to consist of slightly
compact groups. Data (b) has a configuration which is considerably vague in
shape. And data (c) seems to have a string-like shape. We can obtain the results
shown in Table 2 by applying single linkage and complete linkage to these sets of
data. In this case, we shall try to estimate subjectively the similarity s;;
among the objects by the visual judgement of figures. The matrix obtained by
such a way is immediately considered as a non-metric similarity matrix, that is,
a fuzzy resemblance relation. Examination of the results obtained from data (a)
shows that complete linkage is better than single linkage. In data (c), the
results of the two methods are not very different but the value obtained by
single linkage is smaller than that produced from data (a). Moreover, investi-
gating the results obtained by applying single linkage to the three data-sets, we
can observe that is better fitted solution is obtained in the case of data (b) or
(c). The above results illustrate clearly that complete Tinkage is superior to
sxng]e linkage in configurations such as data (a), however, that single linkage
is better than complete linkage in the case of data (c) or (b). Finally, observ-
ing the behavior of index r*, we can evaluate more quantitatively the validity of
a clustering process which has been judged by empirical and subjective interpret-
ability as usual. And investigation of r*'s provides a clue that enables us to
obtain reasonable solutions.

4.  COMPARING PARTITIONS OBTAINED BY CLUSTERING
Though there are many problems to be faced in using cluster analysis in
practical, the most important and difficult are to handle the following situations:
i) examining two dendrograms obtained by applying different clustering
algorithms to the same data.

ii) comparing and evaluating two dendrograms based on different sets or the
same set of data, and examining partitions generated from those dendro-
grams.

In short, there always exist the problems of comparison between dendrograms and
investigating the partitions formed on dendrograms.

COMPARISON BETWEEN TWO DENDROGRAMS

First we shall examine the two dendrograms obtained by applying district
clustering algorithms to the same data set. We now denote two dendrograms by
<Hg,h>, <Hp,t>, and represent the relations (i.e. similitude relations) given by
the both dendrograms by Rg, Rg, respectively. Then it is natural to apply the
concept of fuzzy symmetric difference described.in the above section to this case.
That is, we can investigate the relative difference between two dendrograms by
the measure p(Rq,Rg). We shall verify the validity of our consideration by
simple illustrations.

EXAMPLE 2.
We shall put E ={1,2,3,4} and denote two dendrograms by <H,,h>, <Hg,t>,
namely,

= {{1}, {2}, {3}, {4}, (1,4}, {2,3}, {1,4,2,3}}
{hy} = {hgshy,hp5hsd = {1.0,0.8,0.6,0.4}
and
= {{1}, {2}, {3}, {4}, (1,3}, {2,4}, {1,3,2,4}}
fey= {tg>ty>ta,t3} = {1.0,0.7,0.5,0.3}.
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Table 2.

The r*'s computed for the sets of data in Figure 2.

data set
Method (a) (b) (c)
complete linkage 0.0717 0.3570 0.2895
single linkage 0.3779 0.2108 0.2250
L ]
L ]
L ]
g .
L
3 L ] ° °
® .
L ]
(a) (b)
L]
. °
o .

Figure 2. Artificial data
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Accordingly, we can obtain two relations, R, and Rps from <Hy>h> and <Hp,t>,
respectively.

{1.0 0.4 0.4 0.8
_ 1.0 0.6 0.4
Ry = 1.0 0.4 for <H,,h>
L 1.0
(1.0 0.3 0.3 0.5]
- 1.0 0.7 0.3 ,
Rp = 1.0 Ga] T Hp®
L 1.0 |
Therefore, using the expression (8), we can obtain
(0.0 0.4 0.4 0.5]
_ _ 0.0 0.4 0.4
°(RA‘RB)'(pij) 0.0 0.4
L 0.0
and
r=§ fs.. = 2.5
i<jg

Thus we can see the relative difference or association between RA and RB.

COMPARING THE PARTITIONS GENERATED FROM THE TWO DENDROGRAMS

Second, we shall think of a procedure which compares the sets of partitions
generated from the two dendrograms, which are obtained by applying different
methods to the same data. Let us again denote two dendrograms by <Hg,h>, <Hp,t>
and represent those relations by Ry, Rg. Then these similitude relations may be
decomposed in the following form

Ry = v h,«R,(h;) ( 0c<h;<132=1,2,...,n-1)
(1)
Rg =V tm-Rp(tm) ( Ostpslsm=1,2,...,n-1)
m

where R are equivalence relations in the sense of ordinary set theory, and hzRy
tﬁ shows that all the elements of the ordinary relation Ry or Rz are multi-
p11e

y hZ or t . For example, if
1.0 0.3 0.2 0.5
R = 1.0 0.2 0.3
1.0. 0.2
1.0
then,
ho = 1.0, hl = 0.5, h2 = 0.3, h3 = 0.2.
Thus,
R =V hz-R(hz)
1
1 0 0 O 1 0 0 1
_ 1 0 0 1 0 0
= max 1.0 1 0 B 0.5 - 1 0
1 1

R(0.0) R(0.5)
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T 1 0 1 L R
1T 0 1 T 1
0.3 1 0 » 0.2 11
1 1
R(0.3) R(0.2) (12)

In particular, we try to cut the two dendrograms at a same level a(0sa<l).
And we assume hZ>0L>hZ+l tm>°‘>tm+1 for the cut at the level a. Then we can ob-
E]

tain two partitioning sets,

T =
C/l = {A1,A5, .. ,A) where ¥ = n-1 (13)

C;; = {BI,BZ,...,BL} where I =n-m

This situation, especially in the case of k=3 and L=4, may be shown schematically
as Figure 3.

A 1+1

Ay

A

S — :

By | g 1
|
]
|
|
O - |
: i
[—
1 1 |
By r—m8 | ____] i) : |
| b
: F-d
1 ]
i )
I R
By E
t t
m m+1

Figure 3. Comparison of the set of partitions
produced from the two dendrograms.
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Therefore, using the relationship of decomposition for a similitude relation,
namely (11), we can generate the two relations

x =
Ry = v h,R,(h;) (a<h,)
(14)
R* = v t R_(t) (a<t )
B m—B"' “m m

In this case, it is reasonable to consider p(R R¥) as an index for the compari-
son between the two partitions. However, if wé tu?n our attention to the con-
nectedness between objects rather than the difference between trees, it may be
seen that it is natural to use the intersection of two relations, say R* and Rj
(of course in the sense of fuzzy set theory). Thus the next relat1onsh1p can ge
defined,

* * = * *
r(RA,RB) RAA RB. (15)
Furthermore let 14 denote an element of matrix T(RZ,RE ) and we can obtain
¥ =Lt (16)
1<g

To examine clearly what has been described previously, we shall illustrate with
the following example.

EXAMPLE 3.
Let R and RB cite from Example 2 and set the Tevel of cut at « = 0.45.
Then,
(1.0 0.0 0.0 0.8]
R; = 1.0 0.6 0.0
1.0 0.0
L 10
(1.0 0.0 0.0 0.5]
R* = 1.0 0.7 0.0
B L 1.0 0.0
1.0
accordingly, by (15),
(1.0 0.0 0.0 0.57
* ok _ 1.0 0.7 0.0
T(RysRp) = 1.0 0.0
L 1.0 ] 5
and we can obtain t* = 1.3.
On the other hand, if we calculate p( ) using (8)
(0.0 0.0 0.0 0.5]
* ok _ ; 0.0 0.4 0.0
p(RysRp)=(o; ;) 0.0 0.0
L 0.0
and r ='Z'pij = 0.9.
1<g

In addition, we shall consider another relation

1.0 0.3 0.5 0.3
R = 1.0 0.3 0.7
1.0 0.3
1.0
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Then, t* = 0 by using T(RZ,R;), moreover ' = 2.6 by using p(RZ,RZ).

In conclusion, we can find that +* indicates a kind of degree of agreement between
two partitions. That is, if t* is large then the construction of the two parti-
tions is similar to each other, if t* is small then they may be considered as
opposites. In addition, r indicates a deviation or a kind of error between re-
lTations formed by the two partitions.

5.  EXTENSION OF SINGLE LINKAGE AND COMPLETE LINKAGE

We shall now attempt to modify the algorithm of single and complete linkage,
and to extend it to more general case. Let us now define the similarity (or
dissimilarity) measures between clusters used by AHC techniques as represented by
the following recurrence formula.

1

S =5 (S & 5] # | -H s, -5, | (17)
where st is the similarity between a cluster C, and a cluster Cx formed by the
fusion of cluster Cp and Cy, and s;; is the similarity between clusters C; and
C: (2, J= psgsr,t). vy is a parameter and its value is given beforehand in the
ifiterval [0,1]. If y = 0, we can obtain complete linkage and if y = 1, then
single linkage. Iloreover, if y = 1/2, then the above relation shows the so-called
weighted pair group (WPG) method proposed by Sokal. Obviously, all of the results
given by applying the above formula to the data, which are dendrograms, have the
monotonic hierarchical structure. Therefore, by using the various values of v,
clustering schemes with distinct characteristics can be obtained. If we attempt
to adjust the value of y while keeping the value defined by the expression (10)
as small as possible, then we can investigate the solution which is more reason-
ably fitted to a given data.

Thus, it has been shown that our approach includes a natural generalization
and extension for many AHC methods, especially which are similar to single linkage
and complete linkage. And we shall call this method modified linkage technique.

EXAMPLE 4.

Now we shall attempt to apply our proposed procedure to Peay's data. This
example is from the set of data used by Peay (1975), which in turn is taken from
Parkman and Sawyer (1967). The raw data consisted of the numbers of marriages
occuring between members of different ethnic groups in Hawaii. The measure is
normalized for overall marriage rates which are adjusted to indicate a kind of
disparity measure. But in our illustration this measure is transformed into an
agreement rate. Accordingly the larger the value, the larger the intergroup
marriage rate. The name of ethnic groups included (i.e. objects), and the numbers
identified with them are listed as follows:

0; : Hawaiian 0, : Part-Hawaiian 03 : Caucasian
0, : Puerto Rican 05 : Fillipino O¢ : Chinese
07 : Japanese Og : Korean

The given raw data is shown in Table 3.

First we shall examine the results obtained by applying single linkage and
complete Tinkage to the similarity matrix in Table 3. And the dendrograms as
shown in Figures 4, 5 are produced from single linkage and complete linkage. The
fuzzy degree of fitness r*'s indicated the following values,

i) if complete linkage, r* = 5.173

ii) if WPG method, r* = 0.058

iii) if single linkage, r* = 0.000
Therefore it is easily seen that there exists a well fairly fitted solution be-
tween single linkage and WPG. However we can observe the best fitted solution in
the case of single Tinkage in the sense of fuzzy theory. However observing the
dendrogram formed by single linkage, we can investigate the existence of the so-
called chaining-effect. Furthermore it also shows no large changes in hierarchical
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Table 3. The similarity matrix S for Peay's example.
1 2 3 4 5 6 7 8

1 1.00 0.94 0.79 0.70 0.8 0.73 0.67 0.68

2 1.00 0.8 0.79 0.8 0.8 0.77 0.77

3 1.00 0.80 0.78 0.76 0.76 0.80

4 1.00 0.81 0.63 0.59 0.63

5 1.00 0.70 0.70 0.72

6 1.00 0.76 0.79

7 1.00 0.80

8 1.00

(h)
1.0 0.9 - 0.8 1.0 0.9 0.8 .7 0,6

01 01
02 02 ,
O3 O3
04 04 I—_
Osg 05
Og Og
05 07 ; |_—
Og Og

Dendrogram formed by single linkage

Figure 4.

O

Os 0. [}

Figure 5.

O3

Figure 6.

MST generated from the matrix of Table 3.

Dendrogram formed by complete linkage
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level. Accordingly, in general, we have determined that such a situation is un-
desirable because it indicates that the data contains no structure.

On the other hand, as shown in Figure 5, complete linkage produces a dendro-
gram with large in Tevel, especially going from three groups to two groups. Fur-
thermore we have thought that explicit clusters may exist. However this is doubt-
ful on the basis of additional information obtained from the investigation of the
minimum spanning tree (MST) formed from the solution of single linkage. There-
fore, in the following, we have constructed a MST. The result is shown in Figure
6. This enables us to examine visually and intuitively relationships between
objects.

For example, there exists a slight connectedness between 04 and 0,, but 0,
and 0, are very closely related. Furthermore, we can observe a similar situation
between 0, and 05, or 0, and 03. In this example, the link-like information be-
tween the objects plays an important role in interpreting and exploring the ten-
dency of data.

In the above discussion, we must pay attention to the property that each
value of Sij in the original similarity matrix is larger than 1/2. That is, con-
sidering from a fuzzy-theoretic point of view, each object is very similar. Then
r* obtained from single linkage always indicates zero. On the contrary, if all
values of s;- are smaller than 1/2, then each object is fairly dissimilar. Then
r* obtained *rom complete linkage always indicates zero.

Such properties agree with the well-known features that complete linkage
provides a reasonable solution in cases such as the wide-spread or well-separable
configurations and that single linkage is superior to complete linkage in con-
figurations such as the agglomerate into a mass or string-like shape.

6. CONCLUSION

In conclusion, we shall attempt to summarize some of the suggestions de-
scribed already in the previous sections. Above all our main purpose has been to
examine several properties which characterize the AHC methods, especially single
Tinkage and complete linkage.

Firstly, the arrangement of AHC methods suggests the fact that many methods
have similar features in common. We have discussed consistently the generalized
extension of these properties using the fuzzy set theory. Thus, it has been shown
that our approach includes a natural generalization and extensions for many AHC
methods, especially those which are similar to single linkage and complete linkage.

Next, we proposed that a degree of fitness between solutions by AHC methods
and the similarity or dissimilarity of original data is investigated by a fuzzy
symmetric difference. And an indicator, say fuzziness r*, derived from a fuzzy
symmetric relation makes possible comparisons among the methods. Our consider-
ation is the extension of evaluating procedures based on an ordinary relation, as
for example are several works by Jardine and Sibson (1971), Lerman (1970), and
Zahn (1969).

Finally we discussed the problems of comparison between dendrograms and in-
vestigating the partitions formed on dendrograms, and proposed a practical proce-
dure, in which may be observed the correspondence between the dendrograms (i.e.
equivalence relations) and which examines the goodness of fit between partitions
generated from dendrograms. This approach is regarded as the generalization of
proposals by Rand (1971) and Frank (1977) for comparing partitions. And an exami-
nation of several experiments has shown that our proposal is available and useful.
Thus we may obtain such reasonable indicators that we have overcome systematically
many difficult problems included in most AHC methods, which have been said to be
empirical and intuitive up to now.
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